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Abstract—We consider the problem of placing services in
a telecommunication network in the presence of failures. In
contrast to existing service placement algorithms that focus on
optimizing the quality of service (QoS), we consider the perfor-
mance of monitoring failures from end-to-end connection states
between clients and servers, and investigate service placement
algorithms that optimize the monitoring performance subject to
QoS constraints. Based on novel performance measures capturing
the coverage, the identifiability, and the distinguishability in
monitoring failures, we formulate the service placement problem
as a set of combinatorial optimizations with these measures as
objective functions. In particular, we show that maximizing the
distinguishability is equivalent to minimizing the uncertainty in
failure localization. We prove that all these optimizations are
NP-hard. However, we show that the objectives of coverage and
distinguishability have a desirable property that allows them to
be approximated to a constant factor by a greedy algorithm.
We further show that while the identifiability objective does not
have this property, it can be approximated by the maximum-
distinguishability placement in the high-identifiability regime.
Our evaluations based on real network topologies verify the effec-
tiveness of the proposed algorithms in improving the monitoring
performance compared with QoS-based service placement.

I. INTRODUCTION

The rapid progress of IT technologies has revolutionized

how people view telecommunication networks. As envisioned

by the initiative of Network Functions Virtualization (NFV)

[1], future networks will replace fixed network services im-

plemented by proprietary hardware with virtualized network

services implemented by software running on general-purpose

IT infrastructure. This allows services to be shared efficiently

across different service and network providers. A main ad-

vantage of virtualizing network services is the flexibility in

their placement, i.e., a service provider implementing NFV

can place the virtualized services at various locations ranging

from servers in data centers to network nodes on customer

premises. Proper placement of such services is thus crucial

for realizing the benefit of NFV.

Meanwhile, the increased complexity of virtualized net-

works also implies increased risk of failures due to
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faults/misconfigurations at various levels. While low-level fail-

ures (e.g., failures in the physical nodes/links) can be detected

by in-network mechanisms, many high-level failures (e.g., fail-

ures caused by software bugs, black holes, firewalls, and other

unanticipated issues) can only be observed from end-to-end

connections [2], [3]. In networks where the service provider

and the network provider belong to different administration

domains, end-to-end connection states are the only first-hand

evidence in trouble-shooting services. Generally, states of end-

to-end connections between service hosts and clients provide

the most accurate measurements of the network state as it

manifests in the service layer. Moreover, such measurements

can be taken as a byproduct of fulfilling the service, thus

saving the overhead of active probes. The challenge is that

service-layer observations are coarse-grained, e.g., if a client-

server connection fails, we can only infer that there is at

least one failed element on the connection path (including

endpoints), but not the exact number or locations of failures.

With observations from a diverse set of paths resulting from

monitoring many client-server connections, it becomes pos-

sible to infer the failure locations using a technique known

as (Boolean) network tomography [4]. The capability of such

failure localization is, however, limited by the set of observable

paths [5], which in turn depend on the service placement.

While service placement has been extensively studied in

the literature, the predominant goal has been to optimize

the quality of service (QoS) [6]. From a network monitor-

ing perspective, however, the best-QoS placement may not

provide sufficient information to effectively localize failures.

In a network prone to failures, a good service placement

should achieve dual objectives: during normal operations, it

should provide satisfactory QoS; in case of failures, it should

allow accurate detection and localization of the failed network

elements, which then helps to speed up recovery.

In this work, we unify these objectives by investigating

service placement algorithms that provide the most useful ob-

servations for monitoring failures while satisfying given QoS

constraints. The high-level questions we seek to answer are: (i)

How do we quantify the “usefulness”, in terms of measurable

metrics, of a given service placement for monitoring failures?

(ii) How can we efficiently select a service placement among

exponentially many candidate placements to maximize this

usefulness? (iii) What is the tradeoff between the QoS and
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the monitoring performance?

A. Summary of Contributions

In this work, we revisit the service placement problem from

the perspective of monitoring failures based on binary service-

layer observations. Our contributions are:

1) We propose a set of performance measures that capture

key aspects of failure monitoring, including the capabilities of

detecting failures (coverage), uniquely determining node states

(identifiability), and distinguishing between candidate sets of

failure locations (distinguishability).

2) Using the proposed measures as objective functions, we

formulate the service placement problem as a combinatorial

optimization of maximizing a selected objective subject to QoS

constraints. We show that the optimal placement is NP-hard

to compute for all the above objectives.

3) We show that under the coverage or distinguishability

objective, our problem can be cast as a submodular maximiza-

tion under matroid constraints, which can be approximated

to a factor of 1/2 by a greedy algorithm. We show that

although the identifiability objective is not submodular, it can

be approximated by the distinguishability-based placement in

the high-identifiability regime.

4) We evaluate the proposed algorithms on real network

topologies, which shows that: (i) the proposed algorithms

achieve significantly better monitoring performance than the

best-QoS placement, and (ii) the distinguishability objective

leads to a service placement with the best overall performance

across all the three objectives.

Note that we only consider minimum available observations

(success/failure in accessing a given service) to study the basic

capability of monitoring failures using service-layer observa-

tions. These minimum observations can be augmented with

other information (e.g., traceroutes and other active probes) to

uniquely localize failures. In this sense, our solution minimizes

the need of additional measurements.

B. Related Work

Service placement has been extensively studied based on the

facility location theory [6], where two of the most well-known

formulations are: (1) the uncapacitated k-median problem,

which optimizes the locations for placing a fixed number of

services to minimize the distance between clients and (closest)

servers, and (2) the uncapacitated facility location problem,

which jointly optimizes the number and the locations of ser-

vices to minimize the combined cost of hosting and accessing

services. The classic formulations have been extended in vari-

ous directions, such as distributed service placement in large-

scale networks [7] and iterative service placement/migration

in mobile ad hoc networks [8]. The focus, however, remains

on optimizing the QoS and provisioning cost.

A parallel line of works study the placement of nodes ded-

icated to network monitoring (called monitors). Under round-

trip probing (e.g., ping, traceroute) where only sources of

probes need to be monitors, [9] shows that the optimal monitor

placement is NP-hard and proposes a greedy approximation

algorithm. Under one-way probing where both sources and

destinations need to be monitors, [10] and references therein

propose polynomial-time algorithms to place a minimum

number of monitors to uniquely localize a given number of

failures. Our problem differs in that: (i) we only control

one endpoint (server) of each measurement path, and (ii) the

service placement must satisfy QoS constraints.

Given the states of a set of paths, there may be multiple

sets of failure locations that are consistent with the path states.

Most existing works handle such ambiguity by best-effort

solutions. For example, [9], [11] assume one failure at a time,

[12], [4], [2] attempt to find a minimum set of failures that

can explain all the observed path states. Followup works try to

improve accuracy by looking for failures that occur with higher

probabilities [13] or improving the accuracy in estimating

path states [3]. There is, however, lack of understanding in the

fundamental capability of failure localization. Recently, [5]

proposes to model this capability by the maximum number of

failures that can be uniquely localized, called maximum identi-

fiability. It develops tight upper/lower bounds on the maximum

identifiability and polynomial-time algorithms to compute the

bounds for several types of measurement paths (arbitrarily

controllable, controllable but cycle-free, or uncontrollable).

We study, for the first time, the impact of service placement

on the capability of monitoring failures based on end-to-

end measurements between clients and servers. We adopt

the uncontrollable path assumption in [5], but substantially

generalize the performance measure in [5]: (i) while the

maximum identifiability measure requires all the node states to

be identifiable, our new identifiability measure captures cases

where only a subset of node states are identifiable; (ii) we

propose novel measures capturing two other aspects of failure

monitoring, including the capability of detecting failures and

the capability of reducing uncertainty in failure locations.

The rest of the paper is organized as follows: Section II

formulates the service placement problem, Section III dis-

cusses the prerequisites of solving this problem, Section IV

presents the hardness results, Section V presents efficient

approximate solutions, Section VI evaluates the proposed

solutions, Section VII discusses extensions of the solutions,

and Section VIII concludes the paper. All proofs can be found

in [14].

II. PROBLEM FORMULATION

A. Network Model

We model the service network as an undirected graph

G = (N, L), where N is the set of nodes, including client

nodes, (candidate) server nodes, and communication nodes in

between, and L is the set of communication links. Each node

is associated with a binary state: normal or failed. Here a

“client node” represents an access point for end-clients in the

service network, and thus its state is also of interest to the

service provider. We assume links do not fail, as link failures

can be modeled by the failures of logical nodes that represent

the links. Given a vector of node states, the set of all failed
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nodes is called a failure set, denoted by F . We assume that

node states cannot be measured directly, but only indirectly

via measurement paths. Let P be a given set of measurement

paths comprising the paths between all servers and all clients

interested in their services (see Section II-C), with one path

per client-server pair as determined by the underlying routing

protocol employed by the network. Each path p ∈ P is

represented as a set of nodes traversed by a client-server

connection, whose state is normal if and only if all the

traversed nodes (including endpoints) are in normal states. We

use PF ⊆ P to denote the subset of paths affected by a failure

set F (i.e., traversing at least one node in F ); in particular,

Pv ⊆ P denotes the subset of paths traversing node v.

B. Performance Measure of Network Monitoring

Given a set of measurement paths P , we quantify the value

of P in monitoring node states as follows.

1) Coverage: A basic objective is to detect node failures

from failures of measurement paths. Denote the set of covered

nodes, i.e., nodes traversed by at least one path in P , by

C(P ) ,
⋃

p∈P p. Then |C(P )| measures the number of nodes

whose failures are detectable from measurements in P .

2) Identifiability: Besides detection, it is also important to

localize the failures, i.e., determine the failure set F from

observed path states. Generally, there can be multiple failure

sets that generate the same path states, leading to ambiguity.

The extent to which we can overcome such ambiguity thus

measures our capability of localizing failures.

Intuitively, two failure sets can be distinguished if and only

if they lead to different states for at least one measurement

path, formalized as follows.

Definition 1 ([5]). Given a set of measurement paths P , two

failure sets F1 and F2 are distinguishable with respect to (wrt)

P if PF1
6= PF2

(i.e., ∃p ∈ P that fails under only one failure

set) and indistinguishable otherwise.

Based on this definition, one measure of the failure local-

ization capability is the number of nodes whose states can

be determined without ambiguity. To formalize this idea, we

introduce the following definition.

Definition 2 ([10]). Given a set of measurement paths P and

a node v ∈ N , v is k-identifiable wrt P if for any failure

sets F1 and F2 satisfying (1) |Fi| ≤ k (i = 1, 2) and (2)

F1 ∩ {v} 6= F2 ∩ {v}, F1 and F2 are distinguishable wrt P .

If a node v is k-identifiable wrt P , then the state of v can

be uniquely determined from measurements in P as long as

the total number of failures is bounded by k, because any

indistinguishable failure sets of up to k nodes must imply

the same state for v (i.e., both containing or excluding v).

Definition 2 differs from the definition of k-identifiability in

[5] in that [5] requires every two different failure sets to be

distinguishable, while Definition 2 only requires failure sets

that differ in v to be distinguishable. Note that k is an input

parameter representing the maximum number of failures that

the system is designed to handle.

Let Sk(P ) denote the set of all the k-identifiable nodes in

the network. Its size |Sk(P )| thus measures the number of

nodes whose states can be uniquely determined.

3) Distinguishability: Another measure of the capability of

failure localization is our ability to distinguish between candi-

date failure sets. Given a maximum number of failures k, let

Fk , {F ⊆ N : |F | ≤ k} denote the collection of all possible

failure sets. Define Dk(P ) , {(F, F ′) ∈ F2
k : PF 6= PF ′}

as the set of (unordered) pairs of failure sets in Fk that are

distinguishable from each other. Its size |Dk(P )| measures the

distinguishability in failure localization.

The measure of distinguishability is directly related to the

uncertainty in localizing failures. Specifically, given a set of

measurement paths P , let Ik(F ; P ) , {F ′ ∈ Fk \ F :
PF ′ = PF } be the failure sets indistinguishable from F . Then

|Ik(F ; P )| measures the uncertainty in localizing failures if

the true failure set is F . We have the following relationship

(proved in [14]).

Lemma 3. The average uncertainty in failure localization,

measured by 1
|Fk|

∑
F∈Fk

|Ik(F ; P )|, equals 2
|Fk|

(
(
|Fk|
2

)
−

|Dk(P )|).

C. Monitoring-Aware Service Placement

It is clear from Section II-B that the performance of network

monitoring depends on P , the set of paths connecting servers

and clients, which are determined by the network topology, the

locations of clients, the routing of service requests/responses,

and the positioning of services. The last parameter, positioning

of services, is of particular interest as it is controlled by

the service placement algorithm. We now formally define the

service placement problem when taking network monitoring

performance into account.

Given a service network G = (N, L) and a set of services

S = {s1, . . . , s|S|}, the goal of service placement is to map

each service s ∈ S onto a node v ∈ N to optimize a certain

performance objective under feasibility constraints. Different

from traditional service placement that aims at optimizing QoS

or cost, we want to maximize the capability in monitoring

the network in case of failures, while satisfying given QoS

constraints in normal circumstances.

Specifically, let Cs ⊆ N denote the locations of clients

interested in service s. We model the QoS constraints by a set

of candidate hosts Hs, such that all clients in Cs can be served

with satisfactory QoS if service s is placed at any node in Hs

(see Section III-A). Given the routing of service requests and

responses, each request from client c to host h traverses a set

of nodes p(c, h) ⊆ N , which have to be all in normal states for

the request to be served successfully. We refer to the set p(c, h)
as a measurement path. Let hs denote the host for service

s ∈ S and P (Cs, hs) , {p(c, hs) : c ∈ Cs} the corresponding

set of measurement paths. Then
⋃

s∈S P (Cs, hs) is the overall

set of measurement paths when placing services according to

h , (hs)s∈S .
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Fig. 1. Service placement example.

Given a measure f(P ) of the monitoring performance

using measurement paths P , the problem of monitoring-aware

service placement is defined as:

maxf(
⋃

s∈S

P (Cs, hs)) (1)

s.t. hs ∈ Hs, ∀s ∈ S. (2)

That is, we want to select a host for each service s ∈ S from

its candidate hosts such that the paths between the host and

the corresponding clients provide the best network monitoring

performance measured by f(P ).
Using the measures proposed in Section II-B as concrete

examples, we refer to problem (1) as maximum-coverage

service placement (MCSP) for f(P ) = |C(P )|, maximum-

identifiability service placement (MISP) for f(P ) = |Sk(P )|,
and maximum-distinguishability service placement (MDSP)

for f(P ) = |Dk(P )|.
Example: Consider the example in Fig. 1, where there are

five services, all having clients {e, f, g, h} and candidate hosts

{r, a, b, c, d}. Suppose that at most one node may fail (k = 1).

Recall that the failed node may be a client (access point). If

only considering the QoS, we should place all the services on

node r as it minimizes the maximum distance to clients. This

placement generates measurement paths {e, a, r}, {f, b, r},

{g, c, r}, and {h, d, r}, which cover all the nodes but only

allow the identification of the state of node r, as the failures

of e and a, f and b, g and c, and h and d are indistinguishable.

If we place one service on each candidate host, we will have 16
additional measurement paths between each node in {a, b, c, d}
and each node in {e, f, g, h}, which not only cover all the

nodes but also allow their states to be uniquely identified.

This example shows that by adjusting service placement, we

can monitor failures much more effectively.

III. PREREQUISITES

We start by considering two prerequisites of solving prob-

lem (1): how to determine the candidate hosts and how to

evaluate the objective function for a given service placement.

A. Computing Candidate Set

The goal of computing the candidate set Hs is to ensure a

minimum QoS for all clients while maximizing the flexibility

for service placement. As a concrete example, we consider

latency as the QoS measure. Let d(Cs, h) denote the maximum

distance (in hop count) between node h and any client in Cs

under a given routing protocol. Then a natural way of guar-

anteeing QoS is to impose an upper bound on d(Cs, h) and

only view nodes satisfying the upper bound as candidate hosts.

This definition of the candidate set however requires careful

selection of the bound for each problem instance to guarantee

feasibility. Instead, we adopt a relative QoS constraint by

bounding the QoS degradation compared with a placement

that optimizes the QoS. Let dmin(Cs) , minh d(Cs, h)
and dmax(Cs) , maxh d(Cs, h) be the minimum and the

maximum distances between clients Cs and any possible

service location. We define the relative distance d̃(Cs, h) as

d̃(Cs, h) ,
d(Cs, h)− dmin(Cs)

dmax(Cs)− dmin(Cs)
, (3)

i.e., the increase over the minimum distance normalized by the

maximum possible increase. By definition, the relative distance

is always bounded in [0, 1]. Given a maximum tolerable

relative distance αs, the candidate host set for service s is

given by Hs , {h ∈ N : d̃(Cs, h) ≤ αs}, and is guaranteed

to be nonempty for any αs ≥ 0 (as it contains at least the

host achieving dmin(Cs)). Thus, the problem of computing

the candidate host set is to find the set of locations and their

corresponding d(Cs, h) such that (3) is no more than αs.

According to the above definition, we can compute the

candidate host set in two steps: (i) computing the routing

distance d(c, h) from each potential candidate host h ∈ N to

each client c ∈ ⋃
s∈S Cs, and (ii) for each service s, computing

the worst-case distance d(Cs, h) = maxc∈Cs
d(c, h) and then

the relative distance d̃(Cs, h) as in (3). The candidate set Hs

is then formed by all the nodes with d̃(Cs, h) ≤ αs.

Complexity: For shortest path routing, step (i) can be

implemented by the Dijkstra’s algorithm with a complexity of

O(|L|+|N | log |N |) per host, and step (ii) has a complexity of

O(|N |2) per service, dominated by the computation of worst-

case distances. Thus, computing the candidate set has a total

complexity of O(|N ||L|+ |N |2 log |N |+ |N |2|S|).
Remark: The above only considers QoS constraints; see

Section VII-A for how to handle capacity constraints.

B. Computing Objective Function

Another prerequisite is an efficient method to evaluate the

objective function in problem (1). For coverage, we can easily

compute |C(P )| by taking the union of all measurement paths.

For distinguishability, we have to compute |Dk(P )| by enu-

merating all pairs of failure sets and testing whether they affect

the same set of measurement paths, which requires O(|N |2k)
tests, each of complexity O(|P |) (assuming k ≪ |N |).

For identifiability, we leverage the following result from

[15]. Given a node v ∈ N , we define the minimum set

cover for node v under measurement paths P , denoted by

MSC(v; P ), as the minimum number of nodes other than v
whose failures will disrupt all the paths in P that traverse v,

i.e., it is the size of the minimum cover of path set Pv by

{Pw : w ∈ N \ {v}}. We can express a sufficient and a

necessary condition on the k-identifiability of v in terms of

MSC(v; P ) as follows.

Theorem 4 ([15]). Given a set of measurement paths P , node

v is k-identifiable wrt P :
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a) if MSC(v; P ) ≥ k + 1;

b) only if MSC(v; P ) ≥ k.

These conditions directly lead to the following bounds on

the set of k-identifiable nodes.

Corollary 5 ([15]). Let S̃k(P ) , {v ∈ N : MSC(v; P ) ≥ k}.

Then S̃k+1(P ) ⊆ Sk(P ) ⊆ S̃k(P ).

By Corollary 5, we can bound the identifiability objective

|Sk(P )| from above (below) by counting the number of nodes

with MSC(v; P ) of at least k (k + 1). Although computing

MSC(v; P ) is itself computationally hard as it requires solv-

ing the NP-complete set covering problem (SCP), the above

bounds allow us to borrow techniques from SCP. Specifically,

the greedy algorithm for SCP1 has an approximation ratio of

log |Pv|+1 [16], i.e., the size of the greedily selected set cover,

denoted by GSC(v; P ), satisfies GSC(v; P )/(log |Pv|+1) ≤
MSC(v; P ) ≤ GSC(v; P ). This implies a relaxed bound of

|{v ∈ N :
GSC(v; P )

log |Pv|+ 1
≥ k + 1}| ≤ |Sk(P )|

≤ |{v ∈ N : GSC(v; P ) ≥ k}|. (4)

Note that the lower bound is usually loose, as we have

observed that GSC(v; P ) ≈ MSC(v; P ) in most cases [5].

1) Special Case of k = 1: A case of particular interest is

k = 1, which models single-node failure. In this case, there

are only |N |+ 1 possible failure sets, i.e., F1 = {∅} ∪ {{v} :
v ∈ N} (including the case of no failure). Each node v is 1-

identifiable if and only if (i) there is at least one path traversing

v, and (ii) there is at least one path traversing only one of v
and w for any other node w ∈ N \v. We can compute |S1(P )|
and |D1(P )| using the following data structure.

Define the equivalence graph Q as an undirected graph on

the set of nodes in N plus a virtual node v0 representing the

case of no failure. There is a link between v and w in Q
if and only if failure sets {v} and {w} are indistinguishable

(i.e., Pv = Pw). By definition, Pv0
= ∅. A key observation is

that once {v} and {w} become distinguishable, they remain

distinguishable after adding new measurement paths. Thus, Q
can be constructed incrementally as in Algorithm 1. Starting

from a complete graph (line 1), we sequentially consider each

measurement path p ∈ P and remove the links between

all pairs of nodes distinguished by p, including (i) a node

traversed by p and the virtual node v0 (line 4) and (ii) a node

traversed by p and a node not traversed by p (line 6). The

complexity of Algorithm 1 is O(|N |2|P |). Fig. 2 illustrates

the process of constructing Q.

By definition, |S1(P )| is the number of isolated nodes in

Q (excluding v0), and |D1(P )| is the number of links in the

complementary graph of Q (i.e., not in Q). In the example in

Fig. 2 (c), |S1(P )| = 1, and |D1(P )| = 5.

1This algorithm iteratively selects a set from {Pw : w ∈ N \ {v}} that
covers the most uncovered paths in Pv , until all the paths in Pv are covered.

Algorithm 1: Construct Equivalence Graph

Input: A set of nodes N and a set of measurement paths P
Output: Equivalence graph Q wrt P

1 Q ← complete graph with vertices {v0} ∪N
2 for each path p ∈ P do
3 for each node v ∈ p do
4 remove edge (v, v0) in Q
5 for each node w ∈ N \ p do
6 remove edge (v, w) in Q

7 return Q

G

Q

(a) initial state (b) after adding p1 (c) after adding p2

v1v1 v1

v1v1v1

v2v2 v2

v2v2v2

v3v3 v3

v3v3v3

v0v0v0

p1p1
p2

Fig. 2. Construct equivalence graph Q.

IV. HARDNESS OF OPTIMAL SOLUTION

Given a set of candidate hosts and a method to evaluate

the objective function, it remains to find the optimal service

placement among exponentially many candidate placements.

We show that finding the optimal placement is hard even in

the simplest case of monitoring single-node failures (k = 1).

Our analysis is based on a classic NP-hard problem known

as the maximum coverage problem (MCP). Given a ground set

E and a collection of sets {Ui}ni=1 (Ui ⊆ E), MCP aims at

selecting a subcollection {Ui}i∈I (|I| ≤ M ) that maximizes

|⋃i∈I Ui|.
For the coverage objective, we show that the corresponding

service placement problem, MCSP, is a generalization of MCP

and is therefore NP-hard (recall that all proofs are in [14]).

Proposition 6. MCSP is NP-hard.

For the identifiability objective, intuitively, MISP for k =
1 wants to maximize the number of nodes that are uniquely

covered, i.e., traversed by a non-empty and unique set of paths.

We show by a reduction from MCP that this problem is at least

as hard as MCP and therefore NP-hard.

Proposition 7. MISP is NP-hard even if k = 1.

Using similar arguments, we show that the distinguishability

objective is also hard to optimize even if k = 1.

Proposition 8. MDSP is NP-hard even if k = 1.

V. EFFICIENT APPROXIMATION

The NP-hardness of the optimal solution motivates us to

seek for efficient suboptimal solutions with guaranteed per-

formance. To this end, we identify properties of the objective

functions that allow for easy approximation.

A. Service Placement as Matroid Optimization

We introduce the following concepts from combinatorial

optimization.
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Definition 9 (Matroid [17]). A matroid M is a pair (E, I),
where E is a finite ground set and I ⊆ 2E a non-empty

collection of subsets of E, with the following properties:

• ∀A ⊂ B ⊆ E, if B ∈ I , then A ∈ I;

• ∀A, B ∈ I with |B| > |A|, ∃x ∈ B \ A such that

A ∪ {x} ∈ I .

Definition 10 (Monotone submodular function [17]). Given a

finite ground set E and a function f : 2E → R,

• f is monotone if ∀A ⊂ B ⊆ E, f(A) ≤ f(B);
• f is submodular if ∀A ⊂ B ⊆ E and e ∈ E \B, f(A ∪

{e})− f(A) ≥ f(B ∪ {e})− f(B).

The significance of these definitions is that if our objective

function is monotone submodular and our constraint forms

a matroid, then we can apply techniques from combinatorial

optimization with a known approximation guarantee. In par-

ticular, a greedy algorithm that iteratively selects an element,

subject to the constraint, that maximizes the objective function

achieves a near-optimal2 approximation ratio of 1/2.

Theorem 11 ([19]). Consider the problem of maximizing a

set function f : 2E → R over a collection I ⊆ 2E of sets.

Let f∗ denote the optimal value and fg the value achieved by

the greedy algorithm. If M = (E, I) is a matroid and f is

monotone and submodular, then fg ≥ f∗/2.

We will show that our service placement problem can be

cast as maximizing a set function under matroid constraints.

1) Matroid Constraints: In our problem, the “ground set” is

the collection of all path sets corresponding to feasible service

placements {P (Cs, h) : s ∈ S, h ∈ Hs}, and each “element”

is a set of measurement paths P (Cs, h) between all the clients

Cs of a given service and a candidate host h. Each service

placement effectively selects |S| elements from the ground

set, under the constraint that at most one element is selected

from each {P (Cs, h) : h ∈ Hs} (s ∈ S). This is known as a

special type of matroid called the partition matroid.

2) Set Objective Function: Meanwhile, we can also write

our objective function (1) as a function of the selected el-

ements: f̃({P (Cs, hs) : s ∈ S}) , f(
⋃

s∈S P (Cs, hs)).
Strictly speaking, to apply Theorem 11, we have to verify

monotonicity and submodularity of f̃(·). Nevertheless, we

show in [14] that it suffices to verify these properties for f(·).
Lemma 12. If two functions f̃ : 22

E → R and f : 2E → R

satisfy f̃(A) = f(
⋃

A∈A A), then f̃ is monotone submodular

if and only if f is monotone submodular.

3) Greedy Heuristic: Due to Theorem 11, if our objec-

tive function is monotone and submodular, then the greedy

heuristic is guaranteed to achieve good performance. Given

an objective function f(P ), the algorithm for greedy service

placement is presented in Algorithm 2. Specifically, let Su

denote the set of unplaced services, and P the set of measure-

ment paths generated by placed services, initialized in Lines 1–

2The best approximation ratio is (1−1/e), achieved by a more complicated
algorithm based on continuous relaxation and rounding [18].

2 respectively. Lines 3–7 iteratively place one service at a time,

where in each iteration, line 4 evaluates the objective function

for each unplaced service and its candidate host, and then

selects the placement that maximizes the objective function.

The iteration stops when all the |S| services are placed.

Algorithm 2: Greedy Service Placement

Input: A set of services S, a family of candidate service locations
{Hs : s ∈ S}, a path set P (Cs, h) for each s ∈ S and
h ∈ Hs, and an objective function f(P )

Output: A service placement h = (hs)s∈S

1 Su ← S
2 P ← ∅
3 for iteration 1, . . . , |S| do

4 (s∗, h∗) = argmaxs∈Su,h∈Hs
f(P ∪ P (Cs, h))

5 hs∗ = h∗

6 Su = Su \ {s∗}
7 P = P ∪ P (Cs∗ , h

∗)

8 return h

Remark: Algorithm 2 is a generic greedy algorithm that

works for any objective function f(P ). It remains to verify

monotonicity and submodularity of the proposed objective

functions to guarantee its performance.

B. Coverage Maximization

It is easy to verify that the coverage objective |C(P )| has

the desired property; see [14].

Lemma 13. Function |C(P )| is a monotone submodular

function of P .

Lemma 13 and Theorem 11 imply that when applied to cov-

erage maximization, the greedy heuristic achieves guaranteed

approximation as follows.

Corollary 14. Algorithm 2 for f(P ) = |C(P )| achieves 1/2-

approximation of the optimal solution to MCSP.

That is, the number of nodes covered by client-host paths

under the service placement computed by Algorithm 2 for

f(P ) = |C(P )| is at least half of the maximum number of

nodes that can be covered.

C. Identifiability Maximization

The identifiability objective |Sk(P )| has different proper-

ties. Although it is still monotone (see [14]), we show by

a counterexample that it is not submodular. Consider the

example in Fig. 3, where there are three possible measurement

paths3 p0 = {v2}, p1 = {v1, v2}, and p2 = {v2, v3}. The

sets of 1-identifiable nodes when measuring various paths are

S1({p0}) = {v2}, S1({p1}) = ∅, S1({p0, p1}) = {v1, v2},

S1({p1, p2}) = {v1, v2, v3}, and S1({p0, p1, p2}) =
{v1, v2, v3}. Given an existing set of paths P , the increase in

|S1(·)| by selecting p0 equals: |S1({p0})| − |S1(∅)| = 1 for

P = ∅, |S1({p0, p1})| − |S1({p1})| = 2 for P = {p1}, and

|S1({p0, p1, p2})| − |S1({p1, p2})| = 0 for P = {p1, p2}.

This violates the requirement of submodularity. We thus have

the following result.

3Note that a degenerate path containing a single node is possible when a
service is co-located with a client.
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v1 v2

v3

p0
p1

p2

Fig. 3. Example: |S1(P )| is not submodular.

Proposition 15. Function |Sk(P )| is monotone but not sub-

modular in P .

Since |Sk(P )| can be approximated (upper-bounded) by

|S̃k(P )| according to Corollary 5, we also analyze properties

of this bound. By similar arguments, we can show that |S̃k(P )|
is monotone but generally not submodular. For example, in

Fig. 3, we have for k = 2 that |S̃2(∅)| = |S̃2({p1})| =
|S̃2({p2})| = 0, and |S̃2({p1, p2})| = 1. Thus, the increase

in |S̃2(·)| by selecting p1 equals |S̃2({p1})| − |S̃2(∅)| = 0 if

there is no existing path, but |S̃2({p1, p2})| − |S̃2({p2})| = 1
if we have selected p2, violating submodularity.

Proposition 16. Function |S̃k(P )| is monotone in P but not

submodular for k > 1.

Due to the lack of submodularity, applying Algorithm 2

for f(P ) = |Sk(P )| (or f(P ) = |S̃k(P )|) may not give

guaranteed approximation for MISP.

Remark: Note that for k = 1, |S̃1(P )| is reduced to the

coverage objective |C(P )| which is known to be submodular.

D. Distinguishability Maximization

We show that the distinguishability objective |Dk(P )| also

has the desired property (see proof in [14]).

Lemma 17. Function |Dk(P )| is a monotone submodular

function of P .

By Lemma 17 and Theorem 11, we can apply Algorithm 2

for f(P ) = |Dk(P )| to solve MDSP with guaranteed

approximation.

Corollary 18. Algorithm 2 for f(P ) = |Dk(P )| achieves 1/2-

approximation of the optimal solution to MDSP.

1) Efficient Implementation: For general k > 1, even

the greedy algorithm can be computationally expensive

as evaluating |Dk(P )| requires enumeration of all pairs

of failure sets. For k = 1, however, we can utilize the

equivalence graph Q introduced in Section III-B1 to simplify

the computation by reusing computation in previous iterations.

Specifically, since Q can be constructed incrementally as

seen from Algorithm 1, we can maintain Q for paths

selected in previous iterations, and compute the objective

f(P∪P (Cs, h)) = |D1(P∪P (Cs, h))| (line 4 in Algorithm 2)

by (hypothetically) updating Q for paths in P (Cs, h) using

steps 3-6 in Algorithm 1, and counting the number of missing

links in the updated graph. The placement that removes the

maximum number of links in Q will be selected.

2) Performance in Identifiability: For k = 1, we show

in [14] that the maximum-distinguishability placement gives

guaranteed approximation to the maximum identifiability.

Theorem 19. Let σ0 and σ∗ denote the numbers of non-1-

identifiable nodes (i.e., |N \ S1(P )|) under two placements

that maximize |D1(P )| and |S1(P )|, respectively. Then σ0 ≤
min((σ∗ + 1)σ∗, |N |) and σ∗ ≥ (

√
1 + 4σ0 − 1)/2.

That is, if the maximum-identifiability placement identi-

fies the states for all but σ∗ nodes, then the maximum-

distinguishability placement identifies the states of all but

at most O(σ∗2) nodes; if the maximum-distinguishability

placement fails to identify the states of σ0 nodes, then the

maximum-identifiability placement fails to identify the states

of at least O(
√
σ0) nodes. In the high-identifiability regime

(i.e., σ∗ ≪ |N |), the maximum-distinguishability placement

approximates the maximum identifiability.

Remark: Theorem 19 can be generalized to any k ≥ 1.

Let us call a failure set F (|F | ≤ k) k-identifiable wrt P
if PF is unique in Fk. That is, if the set of failed nodes is

F , then the failures can be uniquely localized as no other

failure set will generate the same set of failed paths. By

arguments similar to Theorem 19, we can show that the

number of non-k-identifiable failure sets under the maximum-

distinguishability placement is at most a quadratic factor away

from the minimum number of non-k-identifiable failure sets.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our proposed heuristics:

greedy coverage maximization (GC), greedy identifiability

maximization (GI), and greedy distinguishability maximization

(GD), against two baseline solutions: 1) best-QoS placement

(QoS), where each service is placed at a node that minimizes

the maximum distance to its clients, and 2) random placement

(RD) under QoS constraints, where each service is placed at

a node randomly selected from its candidate hosts Hs. When

feasible, we also evaluate the optimal placement computed

by brute-force search (BF)4. We consider single-node failures

(k = 1), and evaluate each algorithm by the three performance

measures proposed in Section II-B.

A. Simulation Setting

We consider Rocketfuel ISP topologies, where each node

represents a Point of Presence (POP), i.e., a set of co-located

backbone and access routers as defined in [20]. We select

three topologies: Abovenet, Tiscali, and AT&T, to represent

small/medium/large networks. The characteristics of each net-

work are presented in Table I.

TABLE I
CHARACTERISTICS OF THE NETWORK

ISP #nodes #links #dangling nodes

Abovenet 22 80 2

Tiscali 51 129 13

AT&T 108 141 78

In each network, we consider the dangling nodes (nodes

with degree one) as candidate clients; in the case of Abovenet,

we randomly choose 6 other nodes as candidate clients due

4Note that the optimal placement is computed separately for each perfor-
mance measure.
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to the small number of dangling nodes. We fix the number

of clients per service at 3 and vary the number of services

to suit the network size. We place 3 services for Abovenet, 4
services for Tiscali, and 7 services for AT&T. Clients for each

service are selected in a round-robin fashion among candidate

clients. All services have the same QoS threshold αs ≡ α,

which is varied in [0, 1] to evaluate the tradeoff between QoS

and monitoring performance. Fig 4 shows the (box plot of)

number of candidate hosts as a function of α. As α increases,

the QoS constraint is relaxed and the number of candidate

hosts increases. If α = 1, all the nodes become candidate

hosts. Even if α = 0, there may still be multiple candidate

hosts, all minimizing the maximum distance to clients.

B. Simulation Results

For each network, we plot the number of covered nodes,

the number of 1-identifiable nodes, and the number of distin-

guishable node pairs (see Section III-B1) as functions of α;

see Fig. 5-7. We have the following observations:

Monitoring-QoS tradeoff: Since increasing α enlarges the

set of candidate hosts (Fig. 4), all the algorithms that explore

the entire candidate set (BF, GC, GI, GD, RD) have improved

performance due to the increased diversity of measurement

paths. The only exception is the best-QoS placement (QoS).

As it (deterministically) minimizes server-client distance, it

does not benefit from the enlarged candidate set.

Comparison with optimal: Comparing the heuristics with

the optimal placement computed by BF (Fig. 5) shows that

the greedy heuristic designed for a given performance measure

performs close to the optimal wrt this measure (GC for

coverage, GI for identifiability, GD for distinguishability).

We only perform this comparison for the smallest network

(Abovenet) due to the complexity of BF.

Comparison with baseline: The baseline solutions (QoS,

RD) perform significantly worse than our best-performing

heuristic in all the three measures, especially as α increases. In

particular, the best-QoS placement (QoS) has the worst moni-

toring performance due to the lack of diversity in measurement

paths. This result highlights the need to strategically exploit

the flexibility in service placement.

Comparison between proposed algorithms: Although each

of the proposed heuristics (GC, GI, GD) targets at one perfor-

mance measure, their overall performance shows the following

trend: (1) the coverage-based heuristic (GC) performs well in

coverage and distinguishability but not so well in identifiabil-

ity; (2) the identifiability-based heuristic (GI) performs well

in identifiability but poorly (even worse than RD) in coverage

and distinguishability; (3) the distinguishability-based heuris-

tic (GD) performs well in all the three measures.

To better understand the impact of service placement on

the accuracy of failure localization, we evaluate the degree of

uncertainty for each node, defined as the degree of this node

in the equivalence graph Q (see Section III-B1). For a covered

node, this is the number of other nodes covered by the same

set of paths; for an uncovered node, this is the total number

of uncovered nodes. Intuitively, this measures how precisely
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Fig. 8. Distribution of the degree of uncertainty for (a) QoS, (b) GC,
(c) GI, (d) GD.

we can localize a failure once it is detected. For instance, if a

node with degree of uncertainty n fails, we can narrow down

the failure location to a set of n + 1 nodes, each traversed

by the same set of paths that have all failed. A node is 1-

identifiable if and only if its degree of uncertainty is zero.

Fig. 8 shows the distribution of the degree of uncertainty over

all the nodes in Q (including v0) for AT&T and α = 0.6 under

different service placements. The y-axis represents the fraction

of nodes with a given degree of uncertainty. We see that the

distribution has two spikes, one around zero and the other

around the number of uncovered nodes. Further investigation

shows that the first spike corresponds to covered nodes and the

second to uncovered nodes, implying that if the failed node is

used by at least one service, we can either uniquely localize

the failure or narrow down its location to a few nodes. The

observations are similar for other settings.

VII. EXTENSIONS

Our basic formulation (1) can be extended to incorporate

further constraints and considerations in service placement.

A. Handling Capacity Constraints

Although we have only considered QoS constraints (see

Section III-A), our formulation can be easily extended to in-

corporate further constraints. Specifically, limitations on where

a service can be placed due to software/hardware/security

requirements can be readily incorporated by the candidate

sets and all our previous results hold. Capacity constraints,

however, require further consideration.

Consider node capacity constraints; link capacity constraints

can be handled similarly. We can model these constraints by
∑

s∈S

rs1hs=h ≤ Rh, ∀h ∈
⋃

s∈S

Hs, (5)
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Fig. 4. Box plot of the number of candidate hosts for different services: (a) Abovenet, (b) Tiscali, and (c) AT&T.
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Fig. 5. Comparison between different heuristics and the optimal solution for Abovenet in (a) coverage, (b) identifiability, (c) distinguishability.
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Fig. 6. Comparison between different heuristics for Tiscali in terms of (a) coverage, (b) identifiability, (c) distinguishability.
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Fig. 7. Comparison between different heuristics for AT&T in terms of (a) coverage, (b) identifiability, (c) distinguishability.
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where rs denotes the resource consumed by service s, Rh the

total resource at host h, and 1hs=h an indicator that service

s is hosted by h. These constraints cause correlation between

the placements of different services, which can no longer be

modeled as a matroid as in Section V-A1. Nevertheless, the

new constraints can be modeled by a generalization of matroid.

Definition 20 (p-independence system [18]). A pair (E, I)
(I ⊆ 2E) is a p-independence system for an integer p ≥ 1 if

for all A ∈ I and e ∈ E, ∃B ⊆ A such that |B| ≤ p and

(A \B) ∪ {e} ∈ I .

It is known that greedy heuristic achieves a constant-factor

approximation for such constraints.

Theorem 21 ([19]). For maximizing a monotone submodular

function under a p-independence constraint, the greedy algo-

rithm achieves a 1/(p+ 1)-approximation to the optimal.

Our constraints (2, 5) form a p-independence system with

p = ⌈rmax/rmin⌉ + 1 (rmax , maxs rs, rmin , mins rs), because

to place a service s onto a host h, we need to remove at most

⌈rmax/rmin⌉ services from h and s from its original host (if any).

By Theorem 21 and Lemmas 13 and 17, we know that Algo-

rithm 2, adapted for constraints (5), achieves a constant-factor

approximation for maximizing coverage/distinguishability. We

also observe that the approximation ratio decreases with

rmax/rmin, with the best ratio of 1/3 achieved for services with

identical resource consumptions.

B. Handling Nodes of Interest

Our original objectives in Section II-B assume that we are

interested in monitoring all the nodes. In practice, we may be

interested in only a subset of nodes, e.g., nodes potentially

used by any of the critical services.

Let NI ⊆ N denote the nodes of interest. We can general-

ize our objectives based on NI . For coverage/identifiability,

we can easily define the corresponding measure wrt NI

as the number of covered/k-identifiable nodes in NI . For

distinguishability, we define a failure set F as of interest if

F ∩ NI 6= ∅. Let Fk denote all the failure sets with up to

k failures and F (I)
k ⊆ Fk the failure sets of interest. The

uncertainty in determining a randomly selected failure set

F ∈ F (I)
k , measured by the average number of failure sets

indistinguishable from F , is proportional to the number of

indistinguishable pairs between failure sets in F (I)
k and failure

sets in Fk. Its complement, |{(F, F ′) : F ∈ F (I)
k , F ′ ∈

Fk, PF 6= PF ′}|, thus measures the distinguishability wrt NI .

By similar arguments as in Lemmas 13 and 17, it can

be shown that the generalized coverage/distinguishability ob-

jectives are still monotone submodular, and thus the greedy

algorithm achieves 1/2-approximation for these objectives.

VIII. CONCLUSION

We consider monitoring-aware service placement, which

places services within QoS constraints such that in the face

of failures, node states can be most accurately determined

from the states of end-to-end connections between clients

and servers. Measuring performance by the coverage, the

identifiability, and the distinguishability in monitoring failures,

we cast the problem as a set of combinatorial optimizations,

each maximizing one performance measure. We show that

although the optimal placement is NP-hard, the greedy heuris-

tic achieves 1/2-approximation for maximizing the coverage

or distinguishability. Our evaluations based on real network

topologies show that the proposed algorithms can significantly

improve monitoring performance over an algorithm that only

considers QoS, and the distinguishability-based placement

achieves the best overall performance.
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