Lecture Nine(On Sep 24, 2008)

Definition 13   $ \mathrm{TIME}(T(n)) = \textrm{Class of languages decidable in time }T(n)$. $ \mathrm{SPACE}(T(n)) = \textrm{Class of languages decidable in space }T(n)$ . $ \mathbf{P}= \cup_k \mathrm{TIME}(n^k)$. $ \mathbf{PSPACE}= \cup_k \mathrm{SPACE}(n^k)$. $ \mathbf{EXPTIME}= \cup_k \mathrm{TIME}(2^{n^k})$.

Theorem 9   $ \mathbf{PSPACE}\subset \mathbf{EXPTIME}$

Proof. Let $ L \in \mathbf{PSPACE}$, let $ M$ be a PSPACE machine that decides $ L$. GOAL: Construct an EXPTIME machine $ N$ that decides $ L$.

$ N = M$ $ M$ has only exp(poly) different configurations. $ \qedsymbol$

Theorem 10   If $ EXPTIME$ language $ L$ is $ PSPACE$ then $ EXPTIME = PSPACE$

What should be true about $ L$? For all $ x\in EXPTIME$ , $ x\leq_Q L$.

Does EXPTIME have a complete language $ L$?



Subsections

bighead 2008-10-29