

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 683–685, 2014.
© Springer International Publishing Switzerland 2014

Example-Based Problem Solving Support Using Concept
Analysis of Programming Content

Roya Hosseini and Peter Brusilovsky

University of Pittsburgh - Pittsburgh, PA
{roh38,peterb}@pitt.edu

Abstract. This paper presents two different approaches to example-based prob-
lem solving support in the domain of programming based on concept analysis
of the learning content. The goal of these approaches is to offer students a set of
most relevant remedial examples when they have trouble solving a problem.
The paper reviews earlier work and introduces a global and a local approach for
selecting examples that are similar to the problem in terms of concept coverage
and structure of the content, respectively. It also reports results of a lab study
conducted to explore the effectiveness of each approach.

Keywords: concept-based similarity, problem solving support, remediation.

1 Introduction

Example-based problem solving is one of the efficient approaches used by Intelligent
Tutoring Systems (ITSs) in the programming domain [1]. In this approach, when the
student has trouble solving a problem, the system tries to find the relevant examples
which might be helpful to solve the problem. The approach has been used, for example,
in ELM-ART ITS for LISP programing [2]. While known to be efficient, this approach
remains one of the least explored since the original LISP research was based on advanced
episodic learner modeling which is difficult to build for other programming domains.

Our goal is to create a different version of the example-based problem solving sup-
port for Java programming which is generalizable in multiple different programming
languages without too many effort that is required for advance analysis of content in a
system like ELM-ART. The main innovation is in analyzing domain concepts related
to programming problems and examples and using the underlying concept structure to
find similarity between examples and problems. The similarity can be obtained using
number of complicated approaches, but our first challenge was to choose between
global and local similarity approaches. A global concept-based similarity considers
whether two sets of concepts are more or less similar as a whole and in its simple
form could be identified by cosine similarity of vectors of concepts. A local concept-
based similarity considers similarity on the structure level where detailed level of
similarity can be identified by structure of blocks and adjacent concepts.

To explore and compare these two approaches, we developed a specialized concept
analysis tool, JavaParser, which can extract not only the list of concepts but also con-
cept structure [3]. The parser provides a fine-grained level of indexing per line of
code which helps identifying blocks of code that have sets of adjacent concepts.

684 R. Hosseini and P. Brusilovsky

The parser helped us index a considerable volume of Java programming problems and
examples and we could then start a study comparing the approaches. In the present
work, we introduce global and local concept-based approaches for finding similar
examples for Java problems and present preliminary results of a lab study that aims to
compare the effectiveness of these approaches.

2 Method

We propose global and local concept-based approaches for example-based problem
solving. The conventional global concept-based similarity approach is based on co-
sine similarity with TF-IDF weighting for vectors of concepts. The local concept-
based similarity approach is based on selecting sets of examples that have the closest
blocks of code to the question that the user failed in. The main idea of this approach is
to build subtrees of concepts that have appeared together as blocks in each of the con-
tents. As a result, each subset of concepts that are either in the same line or in the
same block, will be merged together to create a subtree for the content. Having
created the subtrees, we can find the similarity of a question and example by compar-
ing their corresponding subtrees. Several methods have been suggested to compare
trees, among which Tree Edit Distance (TED) is quite well known and has been wide-
ly used in other studies for similar purposes [4]. The distance between the question
and the example is obtained using Eq. (1):

)
1

1

),((min

1

)
1

),((min,
EqQe w

M

e

qsesTEDNqArg

N

q
w

esqsTEDMeArgEQWD ×

=
∈+

=

×∈=  (1)

where WDQE is the weighted distance between question Q and example E; N and M
represent the total number of the subtrees in Q and E, respectively; TED is the Tree
Edit Distance between the given subtrees sq and se; WQe is the sum of Term Frequen-
cy–Inverse Document Frequency (TF-IDF) values of the concepts in the subtree se for
the question Q; Similarly, WEq is the sum of TF-IDF values of the concepts in the
subtree sq for the example E. Finally, the weighted distance WDQE is used in Eq. (2) to
determine the similarity between example E and question Q:

EQWD

e
Sim

,

1
α

= (2)

where Sim is the local concept-based similarity between the example E and question
Q; and α is a coefficient for the exponential function which is set to 0.01 in the
present study. Finally, the top five examples with the highest similarity value can be
selected for presenting to the student as remedial support.

3 Preliminary Evaluation

We conducted a lab study to investigate the effectiveness of local and global concept-
based similarity approaches. We hypothesized that the local approach might outperform

 Example-Based Problem Solving Support Using Concept Analysis 685

the global one since it considers the closeness of chunks in determining the similarity in
a somewhat similar way to ELM-PE that was known as a very successful example rec-
ommendation approach. The study started in January 2014 and is ongoing. To date, we
have had 12 subjects. The learning materials are organized into 6 Java topics, 83 anno-
tated Java examples, and 24 parametric Java questions. Subjects were assigned to three
topics based on their pretest scores and had to solve 4 questions in each of those topics.
We selected relevant examples for the questions and asked the student to rate their help-
fulness in two different conditions: one at the time that student’s answer to question was
incorrect and one after the student finished solving a question. The rating ranges from 0
representing ‘Not helpful at all’ to 3 representing ‘Very helpful’. An analysis of the
results showed that the average rating of students for the examples selected by the glob-
al concept-based approach (1.95) was higher than the local concept-based approach
(1.49). Contrary to what we expected, closeness of the concepts did not help select more
relevant examples. However, for a much more detailed discussion of results, we need to
look into different conditions under which each approach performs better.

4 Conclusion

We proposed global and local concept-based approaches that provide remedial rec-
ommendations of examples for Java programming problem solving. These approaches
can be leveraged to address the problem solving support in different programming
languages with little effort. The result of the ongoing lab study showed that global
similarity is almost always helpful for students while local similarity is not. The col-
lected rating data can be useful for cross validation of multiple numbers of similarity
approaches and this data is open for other researchers as well. For future work, we
would like to perform detailed analysis on the results and also explore whether the
approaches can be improved by taking into account the user knowledge.

References

1. Brusilovsky, P., Peylo, C.: Adaptive and intelligent Web-based educational systems. Inter-
national Journal of Artificial Intelligence in Education 13(2-4), 159–172 (2003)

2. Weber, G.: Individual selection of examples in an intelligent learning environment. Journal
of Artificial Intelligence in Education 7(1), 3–31 (1996)

3. Hosseini, R., Brusilovsky, P.: JavaParser: A Fine-Grain Concept Indexing Tool for Java
Problems. In: The First Workshop on AI-supported Education for Computer Science
(AIEDCS 2013), pp. 60–63 (2013)

4. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and re-
lated problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

	Example-Based Problem Solving Support Using Concept Analysis of Programming Content
	1 Introduction
	2 Method
	3 Preliminary Evaluation
	4 Conclusion
	References

