The boolean type and boolean operators

Recall that Java provides a data type boolean which can take on only
one of two values: true or false.

boolean b = true; // stores the truth value true in b

b = false; // overwrites b with the value false

There are other ways to create boolean values and assign them into
boolean variables besides a simplistic direct assignment of a boolean
literal into a variable. Boolean operators produce true/false values.

For example let’s assume this declaration: int i = 10;

We can assign a truth value into variable b using boolean operators
like this: b =1 < 20;

The expression 1 < 20 is true since I contains the number 10. The
value true 1s then assigned into the variable b.

Let’s look at a summary of all the boolean operators and their
behavior.

&&
true false
truq true false
falsel false false
| |
true false
true| true true
false| true false
!
false true
true false
and -- ALL conditions must be true

or —- ANY condition can be true

Boolean operators

&& 1s logical and

|| 1s logical or

! In logical negation
(pronounced not)

true and true
true and false
false and true

false and false

true or true
true or false
false or true

false or false

boolean variables

boolean variables can have the value true or false. That’s 1t.

boolean minor, foo;

int age = 21;

foo = true;

minor = (age < 18); // (age<l8) produces either true or false

What value 1is now 1in the wvariable minor?

Relational operators

Relational operators produce boolean values
== equality

!= 1inequality

< less than

<= less than or equal
> greater than
>= greater than or equal

Relational operators have higher priority than boolean
operators

x <y && a > b evaluated as if =2 (x<y) && (a>b)

Not a bad idea to parenthesis just for emphasis/clarity

Short circuiting practice
Short-circuiting happens when the result can be determined before the
entire expression has been examined
What do each of the following boolean expressions evaluate to ?
Which of the following expressions short circuit?
boolean a = true, b = false;
int ¢ =6, d=5;

a && ('b)

> 10 || b

More short-circuiting practice

boolean a = true, b = false;

int ¢ = 6, d = 5;

b & (b || c < d)

(c <d) Il D

a && ((! b) |l (c < d))
a || b

ra

l(a || b)

not has a higher precedence than and/or

DeMorgan’s Law

DeMorgans Law - any expression can be equivalently expressed by
multiplying a NOT through the boolean expression and changing || to &&

or changing && to ||

The negation of a conjunction 1s the disjunction of the negations

'(p && q) =2 !'p |l !q

The negation of a disjunction is the conjunction of the negations

'(p Il 9) =2 !p && !qg

and/or examples

e and examples

1f (age > 6 && age < 19)
{

System.out.println(“You should be in school!”);

1f (age < 18 && milesOverLimit > 20)
{

System.out.println (“Underage flagrant speeders get double fine!”);
fine *= 2;

e oOr examples

if (letter == ‘A’ || letter == ‘B’ || letter == ‘C’) RIGHT

1f (letter == A’ || ‘B’ || ‘C’) WRONG

More forms of the if statement

Simple conditional : use if

1if (age < 21)
{
System.out.println(“too young to drink :=(7);

Two way branch: use if else

if (age < 18)
{

System.out.println(“too young to drink :=(7);
}

else
{
System.out.println(“Draft or bottle?”);

three way branch - use an if else/if else

if (age < 18)

{
System.out.println (“too young to drink :=(”);

}
else 1f (age < 70)

{
System.out.println (“Draft or bottle?”);

}

else

{

System.out.println (“How about some Geritol instead?”);

10

Good usage of the 1f test

You may have your i1f structured like this:

1f (<boolean expression here>)

{
// nothing in the if part
}

else
do something

In that case negate the test and put the action under the if
instead of the else

1f (!<boolean expression here>)
do something

Now you don’t need the else

11

