
Block/Scope

• A pair of { } defines a block with it’s own scope

public static void main(String args[])
{

Scanner kbd = new Scanner(System.in);
int limit = 55; // belongs to main
int speed = 77; // belongs to main
if (speed > limit) // issue fine
{

int fine = 125;
System.out.println(“Enter your name”);
String name = kbd.next();
System.out.println(name + “. Your fine is: $“ + fine);
System.out.println(“You were “ + (limit-speed) + “ over limit!”);
// we can reference limit because it is an ancestor block

}
System.out.println(“You better slow down “ + name); // ILLEGAL

// cannot reference name, name is only visible inside the –if- block and
// any blocks that might be nested inside the –if- block

} //END main

Block/Scope

Blocks can be nested to an arbitrary depth. Variable names cannot be re-used in a
nested block but can be re-used in unrelated blocks. Analogy: You don’t name two
kids in the same family with the same name –but- two different families can have
kids whose names are identical.

You should distinguish the two identical variables as the fine belonging to the 1st
–if- block or the fine belonging to the 2nd –if- block. Just like two kids named
Joe in two different families. The distinction then becomes clear.

int limit = 55;
int speed = 77; // this n belongs to main
if (speed > limit) // calculate fine
{

int overLimit = limit-speed;
if (overLimit > 30)
{

int fine = 200;
System.out.println(“You owe “ + fine);

}
else
{

int fine = 100; // this variable is not the same as in above block
System.out.println(“You owe “ + fine);

}
}

Typical uses of blocks

public static void main(String args[])
{

Scanner kbd = new Scanner(System.in);

int sum = 0;
while (sum < 80) // while loop soon to be explained fully
{

System.out.print(“Enter a number: “);
int val = kbd.nextInt();
sum+= val; // i.e. sum = sum + val

}
System.out.println(“Sum is: “ + sum);

}
• Rule of usage: Never declare a variable to have wider scope

that needed to accomplish its purpose. Our val variable is only
needed inside the accumulation loop. Thus we don’t declare it
at same level as sum.

