
1

Recursion

n A problem solving technique where an algorithm is
defined in terms of itself

n A recursive method is a method that calls itself

n A recursive algorithm breaks down the input or the
search space and applies the same logic to a smaller
and smaller piece of the problem until the remaining
piece is solvable without recursion.

n Sometimes called “divide and conquer”

2

Recursion vs. Iteration

n in general, any algorithm that is implemented using a

loop can be transformed into a recursive algorithm

n moving in the reverse direction is not always

possible unless you maintain an additional data

structure (stack) yourself.

3

Recursion Analysis

n in general, recursive algorithms are

l more efficient

l more readable (but occasionally quite the opposite!)

l more “elegant”

n side effects

l mismanagement of memory

l “over head” costs

4

Recursion Components

n Solution to the “base case” problem

l for what values can we solve without another recursive

call?’

n Reducing the input or the search space

l modify the value so it is closer to the base case

n The recursive call

l Where do we make the recursive call?

l What do we pass into that call?

5

How recursion works

When a method calls itself – it is just as if that method is calling some

other method. It is just a coincidence that the method has the same

name, args and code. A recursive method call creates an identical copy

of the calling method and everything else behaves as usual.

Think of the method as a rectangle containing that method’s **code and

data, and recursion is just a layering or tiling of those rectangles with

information passing to with each call and information returning from

each call as the method finishes.

(** code is not actually stored in the call stack)

6

GCD Algorithm

given two positive integers X and Y,

where X >= Y,

the GCD(X,Y) is

l equal to Y if X mod Y = = 0
s else

l equal to the GCD(Y, X mod Y)

l Algorithm terminates when the X % Y is zero.

l Notice that each time the function calls it self, the 2nd arg

gets closer to zero and must eventually reach zero.

7

What is the output of this program?

public void foo(int x)

{

if (x ==0)

return;

else

{ System.out.println(x);

foo(x - 1);

}

}

public static void main(String args[])

{

foo(7);

}

** Identify the Base

case, recursive call and

reduction / modification

of the input toward the

base case.

8

What is the output of this program?

public int foo(int x)

{

if (x ==0)

return 0;

else

return x + foo(x-1);

}

public static void main(String args[])

{

System.out.println(foo(7));

}

** Identify the Base case,

recursive call and

reduction / modification of

the input toward the base

case.

9

What is the output of this program?

public int foo(int x, int y)

{

if (x == 0)

return y;

else

return foo(x-1, y+1);

}

public static void main(String args[])

{

System.out.println(foo(3, 4));

}

** Identify the Base case, recursive call and reduction

or modification of the input toward the base case.

10

What is the output of this program?

public int foo(int x, int y)

{

if (x == 0)

return y;

else

return foo(x-1, y+x);

}

public static void main(String args[])

{

System.out.println(foo(3, 4));

}

11

Now.. You help me write this

n Write a recursive function that accepts an int

and prints that integer out in reverse on 1 line

n What is the base case ?

n How do I reduce the input toward base case ?

n What do I pass to the recursive call ?

12

One more try!

n Write a recursive function that accepts a string

and prints that string out in reverse on 1 line.

n What is the base case ?

n How do I reduce the input toward base case ?

n What do I pass to the recursive call ?

13

Other Examples ...

n Bad examples (but for illustration/treaching)

l factorial

l exponential

l Fibonacci numbers

l power

14

Other Examples ...

n Good examples

l Towers of Hanoi

l GCD

l Eight Queens

l Binary Search Trees

l Maze traversal

l Backtracking (i.e recovery from dead ends)

15

Tail Recursion optimization

n Recursion can use up a lot of memory very quickly!

n The compiler can generate assembly code that is

iterative but guaranteed to compute the exact same

operation as the recursive source code.

n It only works if the very last statement in your

method is the recursive call. This is tail recursion.

n Java does not tail optimize recursive code.

