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Recursion

n A problem solving technique where an algorithm is 
defined in terms of itself

n A recursive method is a method that calls itself

n A recursive algorithm  breaks down the input or the 
search space and applies the same logic to a smaller 
and smaller piece of the problem until the remaining 
piece is solvable without recursion.

n Sometimes called “divide and conquer”
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Recursion vs. Iteration

n in general, any algorithm that is implemented using a 

loop can be transformed into a recursive algorithm

n moving in the reverse direction is not always 

possible unless you maintain an additional data 

structure (stack) yourself.
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Recursion Analysis

n in general, recursive algorithms are

l more efficient

l more readable (but occasionally quite the opposite!)

l more “elegant”

n side effects

l mismanagement of memory

l “over head” costs
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Recursion Components

n Solution to the “base case” problem

l for what values can we solve without another recursive 

call?’

n Reducing the input or the search space

l modify the value so it is closer to the base case

n The recursive call

l Where do we make the recursive call?

l What do we pass into that call? 
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How recursion works

When a method calls itself – it is just as if that method is calling some 

other method. It is just a coincidence that the method has the  same 

name, args and code. A recursive method call creates an identical copy 

of the calling method and everything else behaves as usual.

Think of the method as a rectangle containing that method’s  **code and 

data, and recursion is just a layering or tiling of those rectangles with 

information passing to with each call and information returning from

each call as the method finishes.  

(** code is not actually stored in the call stack)
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GCD Algorithm

given two positive integers X and Y, 

where X >= Y, 

the GCD(X,Y) is

l equal to Y if  X mod Y  = = 0
s else

l equal to the GCD(Y, X mod Y) 

l Algorithm terminates when the X  % Y is zero. 

l Notice that each time the function calls it self, the 2nd arg

gets closer to zero and must eventually reach zero.
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What is the output of this program?

public void  foo( int x)

{

if (x ==0)   

return;

else

{ System.out.println( x );

foo( x - 1 );

}

}

public static void main( String args[])

{

foo( 7 );

}

** Identify the Base 

case, recursive call and  

reduction / modification 

of the input toward the 

base case.
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What is the output of this program?

public int foo( int x)

{

if (x ==0)  

return 0;

else 

return x + foo(x-1);

}

public static void main( String args[])

{

System.out.println( foo(7) );

}

** Identify the Base case, 

recursive call and  

reduction / modification of 

the input toward the base 

case. 
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What is the output of this program?

public int foo( int x, int y)

{

if (x == 0)  

return y;

else 

return foo( x-1, y+1 );

}

public static void main( String args[] )

{

System.out.println( foo( 3, 4 ) );

}

** Identify the Base case, recursive call and  reduction

or modification of the input toward the base case. 
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What is the output of this program?

public int  foo( int x, int y )

{

if (x == 0)  

return y;

else 

return foo( x-1, y+x );

}

public static void main( String args[])

{

System.out.println( foo( 3, 4 ) ); 

}
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Now.. You help me write this

n Write a recursive function that accepts an int 

and prints that integer out in reverse on 1 line

n What is the base case ?

n How do I reduce the input toward base case ?

n What do I pass to the recursive call ?
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One more try!

n Write a recursive function that accepts a string 

and prints that string out in reverse on 1 line.

n What is the base case ?

n How do I reduce the input toward base case ?

n What do I pass to the recursive call ?
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Other Examples ...

n Bad examples (but for illustration/treaching)

l factorial

l exponential

l Fibonacci numbers   

l power
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Other Examples ...

n Good examples

l Towers of Hanoi

l GCD

l Eight Queens 

l Binary Search Trees

l Maze traversal

l Backtracking (i.e recovery from dead ends)
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Tail Recursion optimization

n Recursion can use up a lot of memory very quickly!

n The compiler can generate assembly code that is 

iterative but guaranteed to compute the exact same 

operation as the recursive source code. 

n It only works if the very last statement in your 

method is the recursive call. This is tail recursion.

n Java does not tail optimize recursive code.


