
Arrays

1

• An array is a collection of values of the same

type stored consecutively in memory.

• int arr[] = new int[5];

This declaration has 2 parts:

the stuff on the right of the assignment

the stuff on the left

Let’s start with the part on the right

keyword new has two properties

1) allocates a chunk of memory big enough

for 5 ints

2) brings back the address of that chunk of

memory(or throw Exception if out of memory)

2

• int arr[] = new int[5];

• Produces this:

arr:

• [0] [1] [2] [3] [4]

• The int arr[] part creates a reference variable

named arr. This ref variable contains the

address of the first cell in the memory chunk.

arr contains the address of the [0]’th cell.

That why there is an arrow coming out of arr

pointing at the [0] cell. Thus arr points to or

references the beginning of the array

3

Array Terminology

• arr is the reference variable

• The chunk of memory is the object

• References point to objects.

• Putting values into the array is easy

• Use .length to determine how many cells the

array has

• for (int i=0 ; i<arr.length ; ++i)

arr[i] = i*2;

now arr: [-]---> [0][2][4][6][8]

4

The .length property

• Once an array has been dimensioned you can

always go back and ask the array how many cells

of capacity it has.

• int arr[] = new int[5];

• println(“arr has “ + arr.length + “ cells”);

5

This expression produces the

number 5

The array “discipline”

• There are certain rules to follow in order to

use an array correctly. We refer to these rules

as the array discipline.

• Once you master these rules and become an

advanced programmer you may find occasion to

bend or violate them. In general however there

are many good reasons for always following the

rules.

6

The rules

• 1) When you declare an array you should declare

an int named count or such to track how many

values you have put into the array

• 2) initialize count to 0 and then use count to

represent two things:

– the number of values you have put into the array so

far

– the index position of where the next value should be

stored

7

Passing Arrays

• When you pass an array, you must pass it to a method that is written

to receive and array.

8

public static void main(String[] args)

{ int arrCnt = 0;

int arr[] = new int[5]

for (arrCnt=0 ; arrCnt<arr.length ; arrCnt++)

arr[arrCnt] = arrCnt * 2;

printArray(arr, arrCnt);

}

private static void printArray(int[] array, int cnt)

{

for (int i=0 ; i < cnt ; ++i

System.out.println(array[i]);

System.out.println();

}

Passing Arrays II

• When you pass an array you are just

passing a copy of the address where

the array starts. You are not

passing a copy of the data values.

• It would be very memory inefficient

to make a copy of the actual array

and send that to the method.

• It is much more efficient to just

pass a copy of the address

(reference)

9

Filling an Array from a file

10

numbers.txt contains: 79 50 99 90 34 14 75 96 11 62 51 37

This is what the execution looks like

11

Watch how we gradually refine the loop that reads the

numbers into the array

• while (infile.hasNextInt())

• { int number = infile.nextInt();

• arr[count++] = number;

• } // END WHILE

• Notice we increment the count inside the

[]s

12

And now another refinement of the loop

• while (infile.hasNextInt())

• { int number = infile.nextInt();

• arr[count++] = infile.nextInt();

• } // END WHILE

• There was no need to read the number

into a variable. We can read it directly

into the array

13

