
OBJECT ORIENTED
PROGRAMMING

CMPINF 0401 Lab 06

Coin.java and CoinTester.java

Random Numbers

■ Slide on the course website: http://people.cs.pitt.edu/~hoffmant/java-
slides/RandomNumbers.pdf

– Look at example code

■ Seed

– Consistent random numbers across all runs of a program

■ Great for debugging and grading

– No seed  Inconsistent random numbers across program runs

■ Modulus

– Think of modulus like the mathematical operation

– If our modulus is 100, we cannot have a result of 100 since modulus only gives us
remainder values (0 to 99). This is why it is an EXCLUSIVE upper bound

http://people.cs.pitt.edu/~hoffmant/java-slides/RandomNumbers.pdf

How do declare, initialize, and use the
Random object in Coin.java?

■ We will declare our Random r object globally, but NOT initialize it up top. Since it is

not a final, we will initialize it later on.

■ Since our constructor accepts the seed value we need to initialize r, we can initialize

it in the Coin constructor. Using the examples from the random slides, we know to

set r = new Random (seed)

■ Since we only need our r variable when flipping the coin, we will use it in our flip()

method. We can make a temporary value called int side to hold our randomly

generated number.

■ To generate a random number that is 0 or 1, we can use 2 as our modulus since our

remainder would have to be either 0 or 1. We can then compare this value to our

finals HEADS and TAILS to determine if our flip was a heads or a tails

What methods do
we need?

■ First we find our constructor

– same object name as our file
name (Coin  Coin.java)

■ Next look for any methods that use
our new Coin object (coin1 or coin2)

– Ex: coin1.something() or
coin2.something() means that
something() is one of our
Coin.java methods

■ Look carefully at what the tester
wants the method to return (int,
String, nothing)

■ Look at the parenthesis to see if we
need to declare any parameters in our
method signature

– something() or something(value)

What do we know
about what we need?

■ Coin Constructor

– Parameters: int seed

– Return Type: NONE

■ getNumHeads()

– Parameters: none

– Return Type: int

■ getNumTails()

– Parameters: none

– Return Type: int

■ flip()

– Parameters: none

– Return Type: String/char

■ reset()

– Parameters: none

– Return Type: void

Are there other methods in Coin that
are not called in CoinTester?

■ Yes! These methods will be private since they are only called internally by Coin.java

■ The methods that were called in CoinTester.java will be public since they can be
called externally or internally

■ Getters and Setters – used to protect variables from being accessed or changed
directly

– Getters (ex: getNumHead)

■ Return (or get) a variable or value

– Setters (ex: setNumHead)

■ Modify (or set) a variable or value

■ Can be used to set conditions to prevent value from being invalid (ex: prevent
numHeads from being set a value less than 0 since we cannot have a negative
amount of heads)

What are ALL of the methods we need
then?

Public Methods

■ Coin Constructor

■ getNumHeads

■ getNumTails

■ flip

■ reset

Private Methods

■ setNumHeads

– Parameters: int

■ new value for numHeads to be
set to

– Return Type: void

■ setNumTails

– Parameters: int

■ new value for numTails to be
set to

– Return Type: void

What about our members of Coin?

FINALS

■ int final HEADS = 1

■ int final TAILS = 0

Used in flip method to determine if

random number is a heads or a tails.

Using these finals to compare is more

descriptive and easier to read than

using just a hardcoded 1 or 0

NON-FINALS

■ Random r

■ int numHeads

■ int numTails

Used to keep track of the number of

times we flipped a heads or a tails

All of our members of Coin will be private. This is to protect the members from being accessed

and changed outside of Coin. If another file wants to change or view our members, they’re going

to have to go through our setters or getters to do so.

Writing Coin.java

■ DECLARE all your variables globally

so their scope extends to the whole

file

■ INITIALIZE final variables only

Writing Coin.java

■ Create your Coin constructor

– Initialize random object

– Initialize numHeads and numTails

Writing Coin.java

■ Create your flip() method

– Use random object to determine if heads or tails

– Compare random value to final variables HEADS or TAILS

– Increase numTails or numHeads using set methods

– Return a String or a char value

Writing Coin.java

■ Create get methods

– Return the value of numHeads and numTails

Writing Coin.java

■ Create set methods

– Set the value of numHeads and numTails equal to the value being passed in

Writing Coin.java

■ Create reset methods

– Set the value of numHeads and numTails equal to 0

