T

-

o<

o’

4

-
7

-
-

CS 1550

Week 8 —Lab 3
Priority Scheduling with xv6

Teaching Assistant
Henrigue Potter

CS 1550 —Lab 3

* Due: Monday, March 9t @11:59pm

Scheduling of processes

* Important feature of OS’s is allowing concurrent execution of
processes

* Better utilization of resources
* While a process waits for I/O another one can execute

Scheduling of processes

* Important feature of OS’s is allowing concurrent execution of
processes

* Better utilization of resources
* While a process waits for I/O another one can execute

* In xv6, processes are scheduled in a round-robin fashion

Scheduling of processes

* Important feature of OS’s is allowing concurrent execution of
processes

* Better utilization of resources
* While a process waits for I/O another one can execute

* In xv6, processes are scheduled in a round-robin fashion

However, how
does the scheduler
work in xv6?

Scheduling of processes

* In xv6, an interrupt for the scheduler is generated on every clock tick

—

Time

Scheduling of processes

* In xv6, an interrupt for the scheduler is generated on every clock tick
* A 100Mhz processor does 100 Million clocks ticks per second

—

Time

Scheduling of processes

* In xv6, an interrupt for the scheduler is generated on every clock tick
* The scheduler is called, and a new process is selected

CPU

Time

Scheduling of processes

* In xv6, an interrupt for the scheduler is generated on every clock tick
* The scheduler is called, and a new process is selected

CPU

Time

Scheduling of processes

* How processes are switched during their execution?

CPU

Time

Scheduling of processes

* How processes are switched during their execution?

Hardware interrupts stops the process execution

CPU

Scheduling of processes

* How processes are switched during their execution?

Hardware interrupts stops the process execution

scheduler()

CPU SWtCh()

Scheduling of processes

* How processes are switched during their execution?

Hardware interrupts stops the process execution

scheduler()

CPU SWtCh()

proc.c implements the
scheduler function

void
scheduler (void)

proc.c file oy

void
scheduler (void)

=B

struct proc *p;
4////”" struct cpu *c = mycpu() ;
The process c->proc = 0;

- F

e proc.cfile

information

* proc.hfile

L Per_nrococss state
Hstruct proc {|

// Per-CPU state

Lstruct cpu {

uchar apicid;

struct context *scheduler;
struct taskstate ts;
struct segdesc gdt[NSEGS];
volatile uint started;

int ncli;

int intena;

struct proc *proc;

uint sz;
pde t* pgdir;
char *kstack;

int pid;

void *chan;
int killed;

char name[l&];
int get counts[”

enum procstate state;
struct proc *parent;

struct trapframe *tf;
struct context *context;

struct file *ofile[NOFILE];
struct inode *cwd;

1;

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Size of process memory (bytes)
Page table

Bottom of kernel stack for this

Process state

Process 1D

Parent process

Trap frame for current syscall
swtch () here to run process

If non-zero, sleeping on chan
If non-zero, have been killed
Open files

Current directory

Process name (debugging)

Array for get count of syscall

process

void
scheduler (void)

=B

struct proc *p;
The process stat/ struct cpu *c = mycpu() ;
CcC—>proc = ;

e proc.cfile

information ;

The cpu state
information

void
] scheduler (void)
e proc.cfile =1
struct proc *p;
struct cpu *c = mycpu() ;
c->proc = 0;
Infinite loop _

> for(;;){
. // Enable interrupts on this processor.
Enable interrupts > sti();

* proc.cfile

Loop over all the =—

void
scheduler (void)
B {

struct proc *p;

struct cpu *c = mycpu() ;
c->proc = 0; Before that get
S for(::){ ptable lock
// Enable interrupts on this process
sti();

// Loop over process tabl
acquire (&ptable.lock) ;

ooking for process to run.

processes

—> for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->state !'= RUNNABLE)
continue;

void
scheduler (void)

proc.c file -1
struct proc *p;
struct cpu *c = mycpu() ;
c->proc = 0; Pointer arithmetic!
4 for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process\to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p—->state '= RUNNABLE)
continue;

void

. roc.c file scheduler (void)
proc. oy

struct proc *p;

struct cpu *c = mycpu() ;
c->proc = 0; Pointer arithmetic!

7 for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process\to run.
acquire (&ptable.lock) ;

=] for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->state !'= RUNNABLE)
continue;

\ g

void
scheduler (void)

* proc.cfile =y
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
2 for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

. if (p—->state '= RUNNABLE)
Cpu process is set continue
This is what \ // Switch to chosen process.
myproc() returns €72proc = b;
yp switchuvm(p); ¢ |0ads the process page table

p—>state = RUNNING;

void
scheduler (void)

* proc.cfile oy
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
2 for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p—->state '= RUNNABLE)
continue;

// Switch to chosen process.
C—>proc = p;
switchuvm(p) ;

He.re the process is p->state = RUNNING; The kernel execution will stop here
switched to execute \

swtch (& (c=>scheduler), p->context) ;

switchkvm() ; The process will continue from

wherever is stopped

Scheduling of processes

Hardware interrupts stops the process execution

scheduler()

proc.c implements the
scheduler function

void
scheduler (void)

* proc.cfile =
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
2 for(;:;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p—->state '= RUNNABLE)
continue;

// Switch to chosen process.
C—>proc = p;

switchuvm(p) ;

p—>state = RUNNING;

swtch (& (c->scheduler) p—>context) ;
switchkvm () ; ¢

When a process is This loads the kernel’s

interrupted is starts // Process is done running for now. state information
from here } c->proc = 0;
release (&ptable.lock) ;

void
. proc.c fiIe scheduler (void)
. =K
struct proc *p;
struct cpu *c = mycpu() ;
c->proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock) ;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

. if (p—->state '= RUNNABLE)
This loop never ends continue:

// Switch to chosen process.
C—>proc = p;

switchuvm (p) ;

p—>state = RUNNING;

swtch (& (c—->scheduler), p->context);
switchkvm() ;

// Process is done running for now.
c—>proc = 0;

F }
release (&ptable.lock) ;

//PAGEBREAK: 41

. . volid
YI e ‘ d | n tra p trap(struct trapframe *tf)
11
E if(tf->trapno == T SYSCALL) {
if (myproc()->killed)
exit () ;
* Yield: myproc()->tf = tf;
syscall () ;
if (myproc()->killed)
* Acquire the process table lock ptable.lock exit () ;
return;

* Release any other locks it is holding

1 switch(tf->trapno) {

« Update its own state (proc->state) case T_IRQO + IRQ TIMER:
] if (cpuid() == 0){
acquire (&tickslock) ;
* Call sched ticks++;

wakeup (&ticks) ;
. . release (&tickslock) ;

* Force process to give up CPU on clock tick. I) ()

lapiceoi() ;

* |RQ stands for Interrupt Requests break;

case T IRQO + IRQ IDE:
ideintr () ;
lapiceoi() ;
break;

case T IRQO + IRQ IDE+
// Bochs generates spurious IDEl interrupts.
break;

~raca T TRAMN 4+ TRMN KR -

Yield in trap

* Yield:

Acquire the process table lock ptable.lock

* Release any other locks it is holding
* Update its own state (proc->state)
e (Call sched

* Force process to give up CPU on clock tick.

* |RQ stands for Interrupt Requests

In trap.c:
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would
if (myproc() && myproc()->state == RUNNING &&
tf->trapno == T IRQO+IRQ TIMER)
yield() ;

Yield in trap

Yield:

* Release any other locks it is holding
* Update its own state (proc->state)
e (Call sched

Force process to give up CPU on clock tick.

IRQ stands for Interrupt Requests

Acquire the process table lock ptable.lock

In trap.c:
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would need to chze
if (myproc() && myproc()->state == RUNNING &&
tf->trapno == T IRQO+IRQ TIMER)

yield() ;

Yield in trap

* Yield:
* Acquire the process table lock ptable.lock
* Release any other locks it is holding
* Update its own state (proc->state)
* Call sched
* Force process to give up CPU on clock tick.

* |RQ stands for Interrupt Requests

In proc.c
// Give up the CPU for one scheduling rounc
yield (void)
H {
acquire (&ptable.lock); //DOC: yieldlock
myproc () ->state = RUNNABLE;
sched() ;

release(&ptable. lock);

Priority scheduling of processes

* In lab 3 we will implement priority queue in xv6.

B

Time

B High Priority
I Medium Priority
[| Low Priority

Priority scheduling of processes

* What if processes have different priorities?

B

Time

B High Priority
I Medium Priority
[| Low Priority

Priority scheduling of processes

* Let all the higher priority processes finish before
moving to lower priority ones

CPU

B High Priority
I Medium Priority
[| Low Priority

Priority scheduling of processes

* Let all the higher priority processes finish before
moving to lower priority ones

 What is the problem here?

CPU

B High Priority
I Medium Priority
[| Low Priority

Priority scheduling of processes

* Let all the higher priority processes finish before
moving to lower priority ones

 What is the problem here?

—

P2 P1

CPU

Time

B High Priority
I Medium Priority
[| Low Priority

Priority scheduling of processes

* Even better: Don’t yield if the current process is the
only one of its priority

* This is the bonus part of your lab

CPU

Time

B High Priority
I Medium Priority
[| Low Priority

Processes with same priorities

 What if different processes have the same priorities?

"

Time

B High Priority
I Medium Priority
[| Low Priority

Processes with same priorities

* What if different processes have the same priorities?

CPU

B High Priority
I Medium Priority
[| Low Priority

Processes with same priorities

* Group processes with the same priorities together!
* Use round robin!

Round Robin part 1 Round Robin part 2

CPU

B High Priority
I Medium Priority
[| Low Priority

Lab 3 — part 1: priority-based scheduler for XV6

* The valid priority for a process is in the range of 0 to 200.
* The smaller value represents the higher priority.
» Default priority for a process is 50.

* proc.h:
* Add an integer field called priority to struct proc.

®* proc.c:
* allocproc function:
e Set the default priority for a process to 50

e Scheduler function:
* Replace the scheduler function with your implementation of a priority-based scheduler.

Lab 3 — part 2: add a syscall to set priority

* Add a new syscall, setpriority, for the process to change its priority.
* Changes the current process’s priority and returns the old priority.
* Review lab1 to refresh steps to add a new syscall.

CS 1550

Week 8 — Lab 3

Teaching Assistant

Henriqgue Potter

