
CS 1550
Week 8 – Lab 3

Priority Scheduling with xv6

Teaching Assistant

Henrique Potter



CS 1550 – Lab 3

• Due: Monday, March 9th @11:59pm



• Important feature of OS’s is allowing concurrent execution of 
processes

• Better utilization of resources 
• While a process waits for I/O another one can execute

Scheduling of processes



• Important feature of OS’s is allowing concurrent execution of 
processes

• Better utilization of resources 
• While a process waits for I/O another one can execute

• In xv6, processes are scheduled in a round-robin fashion

Scheduling of processes

xv6



• Important feature of OS’s is allowing concurrent execution of 
processes

• Better utilization of resources 
• While a process waits for I/O another one can execute

• In xv6, processes are scheduled in a round-robin fashion

Scheduling of processes

xv6
However, how 
does the scheduler 
work in xv6?



• In xv6, an interrupt for the scheduler is generated on every clock tick

Scheduling of processes

CPU

Time

P1



• In xv6, an interrupt for the scheduler is generated on every clock tick
• A 100Mhz processor does 100 Million clocks ticks per second

Scheduling of processes

CPU

Time

P1



• In xv6, an interrupt for the scheduler is generated on every clock tick

• The scheduler is called, and a new process is selected

Scheduling of processes

CPU

Time

P1 P2



• In xv6, an interrupt for the scheduler is generated on every clock tick

• The scheduler is called, and a new process is selected

Scheduling of processes

CPU

Time

P1 P2 P2P3 P1



• How processes are switched during their execution?

Scheduling of processes

CPU

Time

P1 P2 P2P3 P1



• How processes are switched during their execution?

Scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Hardware interrupts stops the process execution

P1 kernel P2



• How processes are switched during their execution?

Scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Hardware interrupts stops the process execution

scheduler()
swtch()

P2P1



• How processes are switched during their execution?

Scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Hardware interrupts stops the process execution

scheduler()
swtch()

P2P1

proc.c implements the 
scheduler function



• proc.c file



• proc.c file

The process 
information



• proc.h file



• proc.c file

The process state 
information

The cpu state 
information



• proc.c file

Infinite loop

Enable interrupts



• proc.c file

Loop over all the 
processes

Before that get 
ptable lock



• proc.c file

Pointer arithmetic!



• proc.c file

Pointer arithmetic!

struct foobar *p;
p = 0x1000 + sizeof(struct foobar);

struct foobar *p;
p = 0x1000; 
p++;



• proc.c file

cpu process is set

This is what 
myproc() returns Loads the process page table



• proc.c file

Here the process is 
switched to execute

The kernel execution will stop here

The process will continue from 
wherever is stopped



Scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Hardware interrupts stops the process execution

scheduler()
swtch()

P2P1

proc.c implements the 
scheduler function



• proc.c file

When a process is 
interrupted is starts 
from here

This loads the kernel’s 
state information 



• proc.c file

This loop never ends



Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 

• Force process to give up CPU on clock tick.

• IRQ stands for Interrupt Requests



Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 

• Force process to give up CPU on clock tick.

• IRQ stands for Interrupt Requests
In trap.c:



Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 

• Force process to give up CPU on clock tick.

• IRQ stands for Interrupt Requests
In trap.c:



Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 

• Force process to give up CPU on clock tick.

• IRQ stands for Interrupt Requests

In proc.c:



• In lab 3 we will implement priority queue in xv6.

Priority scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Medium Priority

High Priority

Low Priority



• What if processes have different priorities?

Priority scheduling of processes

CPU

Time

P1 P2 P2P3 P1

Medium Priority

High Priority

Low Priority



• Let all the higher priority processes finish before 
moving to lower priority ones

Priority scheduling of processes

CPU

Time

P1P2P2 P3P1

Medium Priority

High Priority

Low Priority



• Let all the higher priority processes finish before 
moving to lower priority ones

• What is the problem here?

Priority scheduling of processes

CPU

Time

P1P2P2 P3P1

Medium Priority

High Priority

Low Priority



• Let all the higher priority processes finish before 
moving to lower priority ones

• What is the problem here?

Priority scheduling of processes

CPU

Time

P1P2P2 P3P1

Medium Priority

High Priority

Low Priority



• Even better: Don’t yield if the current process is the 
only one of its priority

• This is the bonus part of your lab

Priority scheduling of processes

CPU

Time

P2 P3P1

Medium Priority

High Priority

Low Priority



• What if different processes have the same priorities?

Processes with same priorities

CPU

Time

P1 P3 P5P4P2

Medium Priority

High Priority

Low Priority



Processes with same priorities

CPU

Time

P1 P3P5P4 P2P1 P4 P2 P5

• What if different processes have the same priorities?

Medium Priority

High Priority

Low Priority



• Group processes with the same priorities together!
• Use round robin!

Processes with same priorities

CPU

Time

P1 P3P5P4 P2P1 P4

Round Robin part 1

P2 P5

Round Robin part 2

Medium Priority

High Priority

Low Priority



Lab 3 – part 1: priority-based scheduler for XV6

• The valid priority for a process is in the range of 0 to 200.

• The smaller value represents the higher priority.

• Default priority for a process is 50.

• proc.h:
• Add an integer field called priority to struct proc. 

• proc.c:
• allocproc function:

• Set the default priority for a process to 50

• Scheduler function:
• Replace the scheduler function with your implementation of a priority-based scheduler.



Lab 3 – part 2: add a syscall to set priority

• Add a new syscall, setpriority, for the process to change its priority. 

• Changes the current process’s priority and returns the old priority. 

• Review lab1 to refresh steps to add a new syscall. 



CS 1550
Week 8 – Lab 3

Teaching Assistant

Henrique Potter


