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However, how 
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• proc.c file

The process state 
information
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• proc.c file

Infinite loop

Enable interrupts



• proc.c file

Loop over all the 
processes

Before that get 
ptable lock
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• proc.c file

Pointer arithmetic!

struct foobar *p;
p = 0x1000 + sizeof(struct foobar);

struct foobar *p;
p = 0x1000; 
p++;



• proc.c file

cpu process is set

This is what 
myproc() returns Loads the process page table



• proc.c file

Here the process is 
switched to execute

The kernel execution will stop here

The process will continue from 
wherever is stopped
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scheduler function



• proc.c file

When a process is 
interrupted is starts 
from here

This loads the kernel’s 
state information 



• proc.c file

This loop never ends



Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 

• Force process to give up CPU on clock tick.

• IRQ stands for Interrupt Requests
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Yield in trap

• Yield:

• Acquire the process table lock ptable.lock

• Release any other locks it is holding

• Update its own state (proc->state)

• Call sched 
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In proc.c:



• In lab 3 we will implement priority queue in xv6.
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• Let all the higher priority processes finish before 
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• Let all the higher priority processes finish before 
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• Even better: Don’t yield if the current process is the 
only one of its priority

• This is the bonus part of your lab
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• What if different processes have the same priorities?
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• Group processes with the same priorities together!
• Use round robin!

Processes with same priorities
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Lab 3 – part 1: priority-based scheduler for XV6

• The valid priority for a process is in the range of 0 to 200.

• The smaller value represents the higher priority.

• Default priority for a process is 50.

• proc.h:
• Add an integer field called priority to struct proc. 

• proc.c:
• allocproc function:

• Set the default priority for a process to 50

• Scheduler function:
• Replace the scheduler function with your implementation of a priority-based scheduler.



Lab 3 – part 2: add a syscall to set priority

• Add a new syscall, setpriority, for the process to change its priority. 

• Changes the current process’s priority and returns the old priority. 

• Review lab1 to refresh steps to add a new syscall. 
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