

CS 1550

Week 8 – Lab 3
Priority Scheduling with xv6

Teaching Assistant Henrique Potter

CS 1550 – Lab 3

• Due: Monday, March 9th @11:59pm

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute
- In xv6, processes are scheduled in a round-robin fashion

- Important feature of OS's is allowing concurrent execution of processes
- Better utilization of resources
 - While a process waits for I/O another one can execute
- In xv6, processes are scheduled in a round-robin fashion

However, how does the scheduler work in xv6?

• In xv6, an interrupt for the scheduler is generated on every clock tick

- In xv6, an interrupt for the scheduler is generated on every clock tick
 - A 100Mhz processor does 100 Million clocks ticks per second

- In xv6, an interrupt for the scheduler is generated on every clock tick
- The scheduler is called, and a new process is selected

- In xv6, an interrupt for the scheduler is generated on every clock tick
- The scheduler is called, and a new process is selected

How processes are switched during their execution?

proc.c implements the scheduler function

• proc.c file

```
void
scheduler(void)
```

```
• proc.c file
```

The process information

```
void
scheduler(void)
struct proc *p;
  struct cpu *c = mycpu();
 c->proc = 0;
```

• proc.h file

```
// Per-CPU state
pstruct cpu {
   uchar apicid;
   struct context *scheduler;
   struct taskstate ts;
   struct segdesc gdt[NSEGS];
   volatile uint started;
   int ncli;
   int intena;
   struct proc *proc;
};
```

```
/ Per-process state
// Size of process memory (bytes)
  uint sz;
                          // Page table
  pde t* pgdir;
  char *kstack;
                         // Bottom of kernel stack for this process
                         // Process state
  enum procstate state;
  int pid;
                          // Process ID
  struct proc *parent;
                       // Parent process
  struct context *context;  // swtch() here to run process
  void *chan;
                        // If non-zero, sleeping on chan
  int killed;
                         // If non-zero, have been killed
  struct file *ofile[NOFILE]; // Open files
  struct inode *cwd; // Current directory
  char name[16];  // Process name (debugging)
  int get counts[23];  // Array for get count of syscall
```

```
void
                      scheduler(void)
• proc.c file
                      struct proc *p;
The process state
                         struct cpu *c = mycpu();
                         c->proc = 0;
information
The cpu state
information
```

```
void
                       scheduler(void)
 • proc.c file
                         struct proc *p;
                         struct cpu *c = mycpu();
                         c->proc = 0;
 Infinite loop
                      for(;;){
                           // Enable interrupts on this processor.
Enable interrupts
                        → sti();
```

```
• proc.c file
```

Loop over all the processes

proc.c file

```
void
scheduler (void)
  struct proc *p;
 struct cpu *c = mycpu();
 c \rightarrow proc = 0;
                                                 Pointer arithmetic!
 for(;;){
   // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
```

proc.c file

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
                                                   Pointer arithmetic!
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
                            struct foobar *p;
                                                            struct foobar *p;
                                                            p = 0x1000 + sizeof(struct foobar);
                            p = 0x1000;
                            p++;
```

• **proc.c** file

cpu process is set

This is what myproc() returns

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c\rightarrow proc = p;
      switchuvm(p);
Loads the process page table
      p->state = RUNNING;
```

• proc.c file

Here the process is switched to execute

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
                                                      The kernel execution will stop here
      swtch(&(c->scheduler), p->context);
                                                      The process will continue from
      switchkvm();
                                                      wherever is stopped
```


proc.c implements the scheduler function

• proc.c file

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm();
                                                   This loads the kernel's
                                                   state information
      // Process is done running for now.
      c->proc = 0;
    release (&ptable.lock);
```

When a process is interrupted is starts from here

```
• proc.c file
```

```
This loop never ends
```

```
void
scheduler (void)
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
 for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire (&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      // Switch to chosen process.
      c->proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm();
      // Process is done running for now.
      c->proc = 0;
    release (&ptable.lock);
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

```
//PAGEBREAK: 41
void
trap(struct trapframe *tf)
 if(tf->trapno == T SYSCALL) {
    if (myproc() ->killed)
      exit();
   myproc()->tf = tf;
   syscall();
    if (myproc() ->killed)
      exit();
    return;
 switch(tf->trapno) {
 case T IRQ0 + IRQ TIMER:
    if(cpuid() == 0){
      acquire (&tickslock);
      ticks++;
      wakeup(&ticks);
      release (&tickslock);
   lapiceoi();
   break;
 case T IRQ0 + IRQ IDE:
   ideintr();
   lapiceoi();
   break;
 case T IRQ0 + IRQ IDE+1:
   // Bochs generates spurious IDE1 interrupts.
   break;
  Caca T TROO + TRO KRD.
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In trap.c:

```
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would need to check nlock.
if(myproc() && myproc()->state == RUNNING &&
    tf->trapno == T_IRQ0+IRQ_TIMER)
    yield();
```

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In trap.c:

- Yield:
 - Acquire the process table lock ptable.lock
 - Release any other locks it is holding
 - Update its own state (proc->state)
 - Call sched
- Force process to give up CPU on clock tick.
- IRQ stands for Interrupt Requests

In proc.c:

```
// Give up the CPU for one scheduling round.
void
yield(void)

{
   acquire(&ptable.lock); //DOC: yieldlock
   myproc()->state = RUNNABLE;
   sched();
   release(&ptable.lock);
}
```

• In lab 3 we will implement priority queue in xv6.

What if processes have different priorities?

 Let all the higher priority processes finish before moving to lower priority ones

- Let all the higher priority processes finish before moving to lower priority ones
- What is the problem here?

 Let all the higher priority processes finish before moving to lower priority ones

- Even better: Don't yield if the current process is the only one of its priority
- This is the bonus part of your lab

Processes with same priorities

What if different processes have the same priorities?

Processes with same priorities

• What if **different processes** have the **same** priorities?

Processes with same priorities

- Group processes with the same priorities together!
 - Use round robin!

Lab 3 – part 1: priority-based scheduler for XV6

- The valid priority for a process is in the range of 0 to 200.
- The smaller value represents the higher priority.
- Default priority for a process is 50.
- proc.h:
 - Add an integer field called priority to struct proc.
- proc.c:
 - allocproc function:
 - Set the default priority for a process to 50
 - Scheduler function:
 - Replace the scheduler function with your implementation of a priority-based scheduler.

Lab 3 – part 2: add a syscall to set priority

- Add a new syscall, setpriority, for the process to change its priority.
- Changes the current process's priority and returns the old priority.
- Review lab1 to refresh steps to add a new syscall.

CS 1550

Week 8 – Lab 3

Teaching Assistant Henrique Potter