
CS 1550
Week 6

Project 1 Quiz & Midterm prep

Teaching Assistant

Henrique Potter

CS 1550 – Lab 2 is out

• Due: Monday, February 17, 2020 @11:59pm

• Late: Wednesday, February 19, 2020 @11:59pm
• 10% reduction per late day

Keep in mind the different qemu

• qemu with xv6 (Labs)

Midterm is approaching

• Questions in the midterm demand the application of what was
learned

Midterm is approaching

• Questions in the midterm demand the application of what was
learned
• Think about how the concepts you learned could be applied

Midterm is approaching

• Questions in the midterm demand the application of what was
learned
• Think about how the concepts you learned could be applied

• OS exams tend to ask questions that indirectly cover what was during courses
• Instead of asking what Race Condition is, exams will show you a code excerpt and ask

what type of problems it could have

• Real-life scenario in which a concept could also be logically applied

Project 1 – Quiz
20 min

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer.

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer

• Each man and each woman will be represented by one thread(Process)

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer

• Each man and each woman will be represented by one thread

Time

CPU M1startW1start

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer

• Each man and each woman will be represented by one thread

M1CPU

Time

start W1start

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer.

• Each man and each woman will be represented by one thread

• When the man or woman enters the mixer, its thread will call one of two
procedures, man or woman, depending on the thread gender.

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer.

• Each man and each woman will be represented by one thread

• When the man or woman enters the mixer, its thread will call one of two
procedures, man or woman, depending on the thread gender.

Man () {

}

Woman () {

}

Midterm is approaching

• Question 6
• Pair up men and women as they enter a Friday night mixer.

• Each man and each woman will be represented by one thread

• When the man or woman enters the mixer, its thread will call one of two
procedures, man or woman, depending on the thread gender.

• Each procedure takes a single parameter, name, which is just an integer name
for the thread.

Man (name) {

}

Woman (name) {

}

Midterm is approaching

• Question 6
• The procedure must wait until there is an available thread of the opposite

gender and must then exchange names with this thread.

Man (name) {

}

Woman (name) {

}

Midterm is approaching

• Question 6
• The procedure must wait until there is an available thread of the opposite

gender and must then exchange names with this thread

Man (name) {
nameM = name;
}

Woman (name) {
nameW = name;
}

Semaphore: sem = 0;
String: nameM, nameW;

Midterm is approaching

• Question 6
• The procedure must wait until there is an available thread of the opposite

gender and must then exchange names with this thread.

• Each procedure must return the integer name of the thread it paired up with

Semaphore: sem = 0;
String: nameM, nameW;

Man (name) {
nameM = name;
return nameW;

}

Woman (name) {
nameW = name;
return nameM;

}

Midterm is approaching

• Question 6
• Each procedure must return the integer name of the thread it paired up with

Midterm is approaching

• Question 6
• Each procedure must return the integer name of the thread it paired up with

Man 1

Woman 1

Woman 3

Woman 2

Man 2

Man 3 Man (name) {

}

When a Man
attempts to enter a
call to the Man
function is done.

Midterm is approaching

• Question 6
• Each procedure must return the integer name of the thread it paired up with

Man 1

Woman 1

Woman 3

Woman 2

Man 2

Man (name) {

}

Man 3

He must wait to be
paired with a
Woman’s name.

Midterm is approaching

• Question 6
• Each procedure must return the integer name of the thread it paired up with

Man (name) {

}

Man 3
Man 1

Woman 1

Woman 3

Woman 2

Man 2

Woman (name) {

}

Midterm is approaching

• Question 6
• Each procedure must return the integer name of the thread it paired up with

Man (name) {

}

Man 3
Man 1

Woman 1

Woman 3

Woman 2

Man 2

Woman (name) {

}

We need a signaling
mechanism that would hold
both processes/threads(Man
and Woman) and only allow
them to go when they are
paired

Midterm is approaching

• Question 6
• Men and women may enter the fraternity in any order, and many threads

may call the man and woman procedures simultaneously.

Midterm is approaching

• Question 6
• Men and women may enter the fraternity in any order, and many threads may

call the man and woman procedures simultaneously.

Man 1
Woman 1

Woman 3

Man 2

Man (name) {

}

Woman (name) {

}

Midterm is approaching

• Question 6
• Men and women may enter the fraternity in any order, and many threads may

call the man and woman procedures simultaneously.

Man 1

Man 2
Man (name) {

}

Woman (name) {

}

Midterm is approaching

• Question 6
• Men and women may enter the fraternity in any order, and many threads may

call the man and woman procedures simultaneously.

Man (name) {

}

Woman (name) {

}

Woman 1

Woman 3

Midterm is approaching

• Question 6
• Men and women may enter the fraternity in any order, and many threads may

call the man and woman procedures simultaneously.

• It doesn't matter which man is paired up with which woman (Pitt frats aren't
very choosy in this exercise), as long as each pair contains one man and one
woman, and each gets the other's name.

• Use semaphores and shared variables to implement the two procedures.

Midterm is approaching

wName Man (name) {
nameM = name;
return nameW;

}

mName Woman (name) {
nameW = name;
return nameM;

}

String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Midterm is approaching

wName Man (name) {

nameM = name;

return nameW;
}

mName Woman (name) {

nameW = name;

return nameM;
}

String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;

return nameW;
}

mName Woman (name) {
Down(mutexW);
nameW = name;

return nameM;
}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Only allow 1
person to enter

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexM);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;

return nameM;
}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Only allow 1
person to enter

Should we allow
each process to
signal back to

the same
gender?

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexM);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;

return nameM;
}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Only allow 1
person to enter

Should we allow
each process to
signal back to

the same
gender?

No, multiple
Mans would

overwrite each
others name.

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Only allow 1
person to enter

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Each person of a
different gender

must wait on
each other

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Each person of a
different gender

must wait on
each other

This still don’t
solve the
problem

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2

Woman 1

Woman 3

Let's assume that
two man arrived

first and that’s the
current state

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2

Woman 1

Woman 3

Then a Woman
arrives calls the

Woman procedure

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2

Woman 1

Woman 3

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2

Woman 1

Woman 3
And releases the

Man waiting

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2

Woman 1

Woman 3
Each person of a
different gender

must wait on
each other

This still don’t
solve the
problem

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

We need to also that
a woman can only

return the name of a
single man

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Down(waitW);
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Down(waitM);
Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

We need to also that
a woman can only

return the name of a
single man

We needs processes
to signal each other

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Down(waitW);
Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Down(waitM);
Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

We need to also that
a woman can only

return the name of a
single man

We needs processes
to signal each other

Now each is waiting
on each other on

deadlock

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);

Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);

Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

We need to also that
a woman can only

return the name of a
single man

We needs processes
to signal each other

Now each is waiting
on each other on

deadlock

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0;/* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);

Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);

Up(mutexM);
return nameM;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows woman to wait for man */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3

Makes processes
wait for each other

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);

Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);

Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

Only allows one
process inside

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);

Up(mutexW);
return nameW;

}

mName Woman (name) {
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);

Up(mutexM);
return nameM;

}

Man 1

Man 2
Woman 1

Woman 3

We still have a problem. We
cannot return directly the

shared global variable
value. It mays still be

changed.

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Midterm is approaching

wName Man (name) {
String temp;
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);
temp = nameW;
Up(mutexW);
return temp;

}

mName Woman (name) {
String temp;
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);
temp = nameM;
Up(mutexM);
return temp;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

We still have a problem. We
cannot return directly the

shared global variable
value. It mays still be

changed.

It must be a local variable.

Man 1

Man 2
Woman 1

Woman 3

Midterm is approaching

wName Man (name) {
String temp;
Down(mutexM);
nameM = name;
Up(waitM);
Down(waitW);
temp = nameW;
Up(mutexW);
return temp;

}

mName Woman (name) {
String temp;
Down(mutexW);
nameW = name;
Up(waitW);
Down(waitM);
temp = nameM;
Up(mutexM);
return temp;

}

Semaphore: mutexM = 1; /* allows only one man to be paired */
Semaphore: mutexW = 1; /* allows only one man to be paired */
Semaphore: waitM = 0; /* allows woman to wait for man */
Semaphore: waitW = 0; /* allows man to wait for woman */
String: nameM, nameW; /* shared variables to share names */

Man 1

Man 2
Woman 1

Woman 3Finally we have the
solution!

Midterm is approaching

• 1. Implement a binary semaphore using the atomic exchange
instruction (XCHG). Give the code for both P(mutex) and V(mutex).

Semaphore initialized to 1

Atomic operation of value
check and change

Down Operation Up Operation

Midterm is approaching

• 1. Implement a binary semaphore using the atomic exchange
instruction (XCHG). Give the code for both P(mutex) and V(mutex).

BinarySemaphore {
Bit b;

} S;

Midterm is approaching

• 1. Implement a binary semaphore using the atomic exchange
instruction (XCHG). Give the code for both P(mutex) and V(mutex).

BinarySemaphore {
Bit b;

} S;

P(S){
Bit temp = 1;
While (temp) XCHNG(temp, S.b);

}

Midterm is approaching

• 1. Implement a binary semaphore using the atomic exchange
instruction (XCHG). Give the code for both P(mutex) and V(mutex).

BinarySemaphore {
Bit b;

} S;

P(S){
Bit temp = 1;
While (temp) XCHNG(temp, S.b);

}
V(S) {

S.b = 0;
}

SpinLocks are Busy waiting

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

}

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

}

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

release(&lk−>lk);

}

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

release(&lk−>lk);

}

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

wakeup(lk);

release(&lk−>lk);

}

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

release(&lk−>lk);

}

Locks – Processes sharing CPU

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

release(&lk−>lk);

}

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

…

p−>chan = chan;

p−>state = SLEEPING;

sched();

…

}

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

…

}
Process control
Block

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

…

}

Control checks.
This should be
impossible

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

…

p−>chan = chan;

p−>state = SLEEPING;

sched();

…

}

Change process
state to sleep.
Call scheduler

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

acquire(&ptable.lock);

p−>chan = chan;

p−>state = SLEEPING;

sched();

p->chan = 0

release(&ptable.lock);

}

Global Lock

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

acquire(&ptable.lock);

p−>chan = chan;

p−>state = SLEEPING;

sched();

p->chan = 0

release(&ptable.lock);

}

Once sched() is called this process
execution is held “at this line”

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

acquire(&ptable.lock);

p−>chan = chan;

p−>state = SLEEPING;

sched();

p->chan = 0

release(&ptable.lock);

}

When process awakes, he is
removed from the sleep
channel

Locks – Processes sharing CPU

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

wakeup(lk);

release(&lk−>lk);

}

Locks – Processes sharing CPU

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

wakeup(lk);

release(&lk−>lk);

}

void

wakeup(void *chan)

{

acquire(&ptable.lock);

wakeup_channel(chan);

release(&ptable.lock);

}

Locks – Processes sharing CPU

static void

wakeup_channel(void *chan)

{

struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

}

A processes is awaken from
the sleeping channel

Locks – Processes sharing CPU

static void

wakeup_channel(void *chan)

{

struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

if(p−>state == SLEEPING && p−>chan == chan)

}

Locks – Processes sharing CPU

static void

wakeup_channel(void *chan)

{

struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;

}

Locks – Processes sharing CPU

static void

wakeup_channel(void *chan)

{

struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;

}

Locks – Processes sharing CPU

• Who needs to be a syscall?
• SpinLocks

• Sleep/Wakeup

CS 1550 – Lab exercise 2

• PROCESS SYNCHRONIZATION IN XV6
• Due: Monday, February 17, 2018 @11:59pm

• Part 2 - step 5: user.h
• Add declaration for init_lock()

• void init_lock(struct spinlock *);

• struct condvar;

• struct spinlock;

• Part 3 - step 8: defs.h
• Add declaration for sleep1()

CS 1550
Week 6

Project 1 Quiz & Midterm prep

Teaching Assistant

Henrique Potter

