
CS 1550
Week 5 – Synchronization with xv6

Teaching Assistant

Henrique Potter

CS 1550 – Lab 2 is out

• Due: Monday, February 17, 2020 @11:59pm

• Late: Wednesday, February 19, 2020 @11:59pm
• 10% reduction per late day

Keep in mind the different qemu

• qemu with xv6 (Labs)
• Should be executed at linux.cs.pitt.edu

• qemu (Project 1)
• Should be executed at thoth.cs.pitt.edu

Locks – Processes without sharing CPU

P1CPU

Time

start

Locks – Processes without sharing CPU

P1CPU

Time

start

• With no sharing, process must run to completion.

Locks – Processes without sharing CPU

P1CPU

Time

start finish

• With no sharing, process must run to completion.

Locks – Processes without sharing CPU

P1CPU

Time

start finish P2start finish

• OS chooses another processes to execute once the first finishes

Locks – Processes without sharing CPU

P1CPU

Time

start finish P2start finish P3

• OS chooses another processes to execute once the first finishes

Locks – Processes without sharing CPU

P1CPU

Time

start

• What if P1 is a big process?

Locks – Processes sharing CPU

P1CPU

Time

start

• Solution switch processes during their execution.

Locks – Processes sharing CPU

P1CPU

Time

start P2start

• Solution switch processes during their execution.

Locks – Processes sharing CPU

P1CPU

Time

start P2start P1

• Solution switch processes during their execution.

Locks – Processes sharing CPU

P1CPU

Time

start P2start P2P1 finish

• Solution switch processes during their execution.

Locks – Processes sharing CPU

P1CPU

Time

start P2start P2P1 finish P1 finish

• Solution switch processes during their execution.

Locks – Processes sharing CPU

P1CPU

Time

start P2start P2P1 finish P1 finish

• Solution switch processes during their execution.

What is the little gap?

Locks – Processes sharing CPU

P1CPU

Time

start P2start P2P1 finish P1 finish

• Solution switch processes during their execution.

What is the little gap?
The OS Scheduler

• What happens in Parent-Child Process scenario?

Locks – Processes sharing CPU

P1CPU

Time

start CP2start Child P2P1 P1 finish

• What happens in Parent-Child Process scenario?

• How to keep integrity/correctness on race conditions?

Locks – Processes sharing CPU

P1CPU

Time

start CP2start Child P2P1 P1 finish

shared data

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

struct list *list = 0;

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

struct list *list = 0;

void

insert(int data) {

struct list *l;

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

}

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

struct list *list = 0;

void

insert(int data) {

struct list *l;

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

}

P1CPU

P1 stops here the
OS switches to P2

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

struct list *list = 0;

void

insert(int data) {

struct list *l;

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

}

P1CPU

P2 gets the same
reference to the
same block of
data of list and
overwrites it

CP2

P1 stopped

Locks – Processes sharing CPU

struct list {

int data;

struct list *next;

};

struct list *list = 0;

void

insert(int data) {

struct list *l;

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

}

P1CPU

When P1 comes back it will have
written the wrong data

CP2

CP2 stopped

P1

Race condition: A race condition is an undesirable
condition that happened when having multiple
processes running on a piece of data which does not
use any exclusive locks to control access.

Locks – Processes sharing CPU

• Sharing CPU among processes

• Ensuring data integrity/correctness

• Ensure that a critical section of your code is only executed by one
process

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2 P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2 P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2

P1 gets locks the lock

P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2

P1 gets locks the lock

P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2

When the OS schedule CP2

P1 stopped

P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2

It will try to get the lock but won’t.P1 stopped

P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2

It will try to get the lock but won’t.

It will be constantly try to get it (in a loop).
Until the OS switches back to P1

P1 stopped

P1

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2 P1

P1 release the lock P2 will finally be
able to execute, once scheduled

CP2 stopped

Locks – Processes sharing CPU

struct list *list = 0;

struct spinlock listlock;

void

insert(int data)

{

struct list *l;

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

}

P1CPU CP2 P1

P1 release the lock P2 will finally be
able to execute, once scheduled

CP2 proceeds

CP2

• SpinLock

Locks – Processes sharing CPU

Void

acquire(struct spinlock *lk)

{

for(;;) {

if(!lk->locked) {

lk->locked = 1;

break;

}

}

}

• Keep spinning until find
lock is released

• But we can have the same issue
as before

• We need to check and
lock atomically

• SpinLock

Locks – Processes sharing CPU

Void

acquire(struct spinlock *lk)

{

for(;;) {

if(!lk->locked) {

lk->locked = 1;

break;

}

}

}

• Keep spinning until find
lock is released

• But we can have the same issue
as before

• We need to check and
lock atomically

P1

• SpinLock

Locks – Processes sharing CPU

Void

acquire(struct spinlock *lk)

{

for(;;) {

if(!lk->locked) {

lk->locked = 1;

break;

}

}

}

• Keep spinning until find
lock is released

• But we can have the same issue
as before

• We need to check and
lock atomically

P1 CP1

• SpinLock

Locks – Processes sharing CPU

Void

acquire(struct spinlock *lk)

{

for(;;) {

if(!lk->locked) {

lk->locked = 1;

break;

}

}

}

• Keep spinning until find
lock is released

• But we can have the same issue
as before

• We need to check and
lock atomically

P1 CP1

• XV6 relies on a special 386 hardware instruction, xchg

• Atomically check and change a register value
• xchg(&lk−>locked, 1)

Locks – Processes sharing CPU

Locks – Processes sharing CPU

• Swap a word in memory with
the contents of a register

• In acquire function:
• loop xchg instruction

• Each round atomically read lock
and set the lock to 1

void

acquire(struct spinlock *lk)

{

pushcli(); // disable interrupts to

avoid deadlock.

…

// The xchg is atomic.

while(xchg(&lk−>locked, 1) != 0);

…

// Record info about lock acquisition for

debugging.

lk−>cpu = mycpu();

getcallerpcs(&lk, lk−>pcs);

}

Locks – Processes sharing CPU

P1CPU

Time

CP2 CP2P1 P1

shared data

CP2

• But the we have another issue
• Busy waiting

Lost CPU time Lost CPU time

Locks – Processes sharing CPU

• Spin Lock
• Busy waiting

• Useful for short critical sections
• E.g. increment a counter, access an array element, etc.

• Not useful, when the period of wait is unpredictable or will take a long time
• E.g. read page from disk

Locks – Processes sharing CPU

• Sleep Locks
• For code need to hold a lock for a long time (read/write to disk)

• Avoids the schedule of “spin locked” processes

Locks – Processes sharing CPU

• Sleep Locks
• For code need to hold a lock for a long time (read/write to disk)

• Avoids the schedule of “spin locked” processes

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

lk−>locked = 1;

lk−>pid = myproc()−>pid;

release(&lk−>lk);

}

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

lk−>locked = 0;

lk−>pid = 0;

wakeup(lk);

release(&lk−>lk);

}

Locks – Processes sharing CPU

• Sleep Locks
• For code need to hold a lock for a long time (read/write to disk)

• Avoids the schedule of “spin locked” processes

void

acquiresleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

while (lk−>locked) {

sleep(lk, &lk−>lk);

}

lk−>locked = 1;

lk−>pid = myproc()−>pid;

release(&lk−>lk);

}

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk−>lk);

lk−>locked = 0;

lk−>pid = 0;

wakeup(lk);

release(&lk−>lk);

}

Locks – Processes sharing CPU

• Put one process to sleep waiting
for event

• Mark current process as sleeping

• Call sched() to release the
processor

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

…

p−>state = SLEEPING;

sched();

…

}

• Put one process to sleep waiting
for event

• Mark current process as sleeping

• Call sched() to release the
processor

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

if(lk != &ptable.lock){

acquire(&ptable.lock);

release(lk);

}

p−>chan = chan;

p−>state = SLEEPING;

sched();

p->chan = 0

if(lk != &ptable.lock){

release(&ptable.lock);

acquire(lk);

}

}

• Put one process to sleep waiting
for event

• Mark current process as sleeping

• Call sched() to release the
processor

void

sleep(void *chan, struct spinlock *lk)

{

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

if(lk != &ptable.lock){

acquire(&ptable.lock);

release(lk);

}

p−>chan = chan;

p−>state = SLEEPING;

sched();

p->chan = 0

if(lk != &ptable.lock){

release(&ptable.lock);

acquire(lk);

}

}

Sanity Checks

• Must be a current process

• Must have been passed a lock

Hold the ptable.lock,

it is safe to release lk

Locks – Processes sharing CPU

• Wake up process when event happened

• Mark a waiting process as runnable

static void

wakeup(void *chan)

{

struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;

}

Locks – Processes sharing CPU

• Who needs to be a syscall?
• SpinLocks

• SleepLocks

CS 1550 – Lab exercise 2

• PROCESS SYNCHRONIZATION IN XV6
• Due: Monday, February 17, 2020 @11:59pm

• Part 2 - step 5: user.h
• Add declaration for init_lock()

• void init_lock(struct spinlock *);

• struct condvar;

• struct spinlock;

• Part 3 - step 8: defs.h
• Add declaration for sleep1()

CS 1550
Week 5 – Synchronization with xv6

Teaching Assistant

Henrique Potter

