
CS 1550
Week 4 – Project 1 Discussion

Teaching Assistant

Henrique Potter

Recitation TA – Office Hours

• Office Hours (SENSQ 6507)
• Tuesday:

• 10:00 am to 11:00 am / 6:00 pm to 7:00 pm

• Wednesday:
• 10:00 am to 12:00 pm

• Friday:
• 10:00 am to 12:00 pm

• Email
• potter.hp@pitt.edu

• Slides Website
• http://people.cs.pitt.edu/~henriquepotter/

mailto:potter.hp@pitt.edu

CS 1550 – Course Servers

Local host Remote Host

CS 1550 – Course Servers

Local host Remote Host

Laptop
PC

Notebook
MacBook

CS 1550 – Course Servers

linux.cs.pitt.edu

thoth.cs.pitt.edu

Local host Remote Host

Laptop
PC

Notebook
MacBook

CS 1550 – Course Servers

linux.cs.pitt.edu

thoth.cs.pitt.edu

Local host

Laptop
PC

Notebook
MacBook

ssh (terminal)
puty.exe

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

Laptop
PC

Notebook
MacBook

ssh (terminal)
puty.exe

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

Laptop
PC

Notebook
MacBook

ssh (terminal)
puty.exe

make ARCH=i386 bzImage

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

Laptop
PC

Notebook
MacBook

ssh (terminal)
puty.exe

make ARCH=i386 bzImage

bzImage
System.map

Pay attention to the
path of both files

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

Laptop
PC

Notebook
MacBook

ssh (terminal)
puty.exe

make ARCH=i386 bzImage

bzImage
System.map

How can we
execute the

image we just
compiled?

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

make ARCH=i386 bzImage

bzImage
System.map

Qemu

Qemu runs
locally like any
other program!

But it is a
Hardware
Emulator!

How can we
execute the

image we just
compiled?

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

make ARCH=i386 bzImage

bzImage
System.map

Qemu

Linux
images

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

make ARCH=i386 bzImage

bzImage
System.map

Qemu

Linux
images

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

make ARCH=i386 bzImage

bzImage
System.map

Qemu

Linux
images

Linux(original)

Linux(devel)

However we
need to copy that
image first and
load the kernel
inside Qemu!

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
images

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
images

Linux(original)

Linux(devel)

So we boot the
Original Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

So we boot the
Original Remote Host

• Choose Linux(original)
• User ‘root’ as user and password

CS 1550 – Project 1 kernel compilation

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

Linux(original)

Linux(devel)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

We need to copy it to
our local Qemu with a
stable OS(Original)

Remote Host

CS 1550 – Project 1 kernel compilation

thoth.cs.pitt.edu

Local host

bzImage
System.map

Qemu

Linux
Original

scp <user_id>@thoth.cs.pitt.edu:<path_to_the_file>/<file_name> .

We need to copy it to
our local Qemu with a
stable OS(Original)

Remote Host

CS 1550 – Project 1 kernel compilation

scp <user_id>@thoth.cs.pitt.edu:<path_to_the_file>/<file_name> .

CS 1550 – Project 1 kernel compilation

After copying we need to
put it in the correct folder
/boot/ and overwrite the
bzImage-devel

Local host

Qemu

Linux Original

~/bzImage
~/System.map

CS 1550 – Project 1 kernel compilation

Local host

Qemu

Linux Original

/boot/bzImage
/boot/System.map

cp bzImage /boot/bzImage-devel
cp System.map /boot/System.map-devel

cp will copy
this file

with this name
and path

CS 1550 – Project 1 kernel compilation

cp bzImage /boot/bzImage-devel
cp System.map /boot/System.map-devel

lilo

Local host

Qemu

Linux Original

/boot/bzImage
/boot/System.map

CS 1550 – Project 1 kernel compilation

Call reboot and choose linux-devel

Local host

Qemu

Linux-devel

Synchronization

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 3 Step 4
Return
results

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• Each process operates sequentially

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2 Step 4
Return
results

Step 3

Step 3

Program 1

• All is fine until processes want to share data
• Exchange data between multiple processes

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2

Shared
Resource

Step 4
Return
results

Program 1

• All is fine until processes want to share data
• Exchange data between multiple processes

• Order of execution may affect the output

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2

Shared
Resource

Step 4
Return
results

Program 1

• All is fine until processes want to share data
• Exchange data between multiple processes

• Order of execution may affect the output

• Entering this region requires control

Synchronization

Step 1 Step 2 Step 4
Return
results

Program 2

Step 1 Step 2

Shared
Resource

Step 4
Return
results

• These issues apply to threads as well

• Semaphore is a protected integer variable
that can facilitate and restrict access to
shared sources in a multi-processing
environment.

• Mutex allows only one program to enter a
critical region. It has the principle of
ownership.

Synchronization

• 𝑆 – Integer (non-negative value at initialization)

• 𝑄 – Queue of processes/threads (empty at initialization)

• Two most common kinds of semaphores
• Counting semaphores

• Represent multiple resources

• Binary semaphores
• Represent two possible states (1 or 0 locked or unlocked)

• Signaling mechanism

Semaphore

• down() / wait()
• Decrements 𝑆

• If 𝑆 is now negative, the current process is blocked and placed in 𝑄

Semaphore – two basic operations

• down() / wait()
• Decrements 𝑆

• If 𝑆 is now negative, the current process is blocked and placed in 𝑄

• up() / signal()
• Increments 𝑆

• If after the increment, 𝑆 is still <= 0, that means there is still some blocked
process in the queue. One of them should be dequeued and becomes
unblocked.

Semaphore – two basic operations

Semaphore – pseudo code

Semaphore – pseudo code

Semaphore – pseudo code

Project 1 – Discussion

struct cs1550_sem
{

int value;
//priority queue

};

• Declare a simple struct that contains an integer value and a queue of processes:

Project 1 – Discussion

struct cs1550_sem
{

int value;
//priority queue

};

• Declare a simple struct that contains an integer value and a queue of processes:

• Make two new system calls that each has the following signatures:

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)
asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

Project 1 - Syscalls and IPC

struct cs1550_sem
{

int value;
//priority queue

};

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

• Here the process can sleep.

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

Project 1 - Syscalls and IPC

struct cs1550_sem
{

int value;
//priority queue

};

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

• Here the process can sleep.
• Mark the task as not ready

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

Project 1 - Syscalls and IPC

struct cs1550_sem
{

int value;
//priority queue

};

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

• Here the process can sleep.
• Mark the task as not ready
• set the current stat as “TASK_INTERRUPTIBLE”

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

Project 1 - Syscalls and IPC

struct cs1550_sem
{

int value;
//priority queue

};

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

• Here the process can sleep.
• Mark the task as not ready
• set the current stat as “TASK_INTERRUPTIBLE”
• Invoke schedule() to get next task.

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

The process can sleep. Mark the task as
not ready (but can be awoken by signals)

Project 1 - Syscalls and IPC

struct cs1550_sem
{

int value;
//priority queue

};

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

• wake_up_process(sleeping_task);

Struct that represents a process put to sleep
by the down() method

Project 1 - Discussion
• The semaphores need to be implemented as part of the kernel
• We need to do our increment or decrement and the following check on it atomically

• We can use spin locks for that

Project 1 - Discussion
• The semaphores need to be implemented as part of the kernel
• We need to do our increment or decrement and the following check on it atomically

• We can use spin locks for that

• Create a spinlock with a provided macro:
DEFINE_SPINLOCK(sem_lock);

Project 1 - Discussion
• The semaphores need to be implemented as part of the kernel
• We need to do our increment or decrement and the following check on it atomically

• We can use spin locks for that

• Create a spinlock with a provided macro:
DEFINE_SPINLOCK(sem_lock);

• We can then surround our critical regions with the following:
spin_lock(&sem_lock);
// critical region
spin_unlock(&sem_lock);

Project 1 - Tips
• Using kmalloc to allocate memory

• Synopsis: void * kmalloc (size_t size, gfp_t flags);
• https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html

• printk(), you may want to use for printing out debugging messages from the kernel.

• In general, you can use some library standard C functions, but not all. If they do an OS call,
they may not work.

https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html

Project 1 - Tips
• Copy the test programs to verify your Semaphore Implementation:

• Trafficsim test program for project 1

trafficsim.c
trafficsim-mutex.c
trafficsim-strict-order.c

http://people.cs.pitt.edu/~henriquepotter/resources/cs_1550_2020/projects/Project 1-Tests.zip

Project 1 – Building and running test programs

Tell gcc to look for the new include files

Cannot run our test program on thoth.cs.pitt.edu

Test the program under QEMU
• Installed the modified kernel
• Copy the test program to QEMU
• Then just run it

CS 1550 – Project 1 kernel compilation

If you want to run the test programs
You should compile them in thoth
and copy to your Linux-devel with
the scp command

Local host

Qemu

Linux-devel

thoth.cs.pitt.edu

trafficsim.c
trafficsim-mutex.c

…

Remote Host

Project 1 – Files for submission

• Syscalls you will modify the files
• Actual implementation

• linux-2.6.23.1/kernel/sys.c

• Syscall Number map
• linux-2.6.23.1/arch/i386/kernel/syscall_table.S

• Exposes syscall number to C programs
• linux-2.6.23.1/include/asm/unistd.h

• A header file named sem.h
• All required declarations into the file.
• Should be in the same folder as the test case file when compiling.

Project 1 – Files for submission

• Syscalls you will modify the files
• Actual implementation

• linux-2.6.23.1/kernel/sys.c

• Syscall Number map
• linux-2.6.23.1/arch/i386/kernel/syscall_table.S

• Exposes syscall number to C programs
• linux-2.6.23.1/include/asm/unistd.h

• A header file named sem.h
• All required declarations into the file.
• Should be in the same folder as the test case file when compiling.

thoth.cs.pitt.edu

bzImage
System.map

sys.c
syscall_table.S
unitstd.h
sem.h (you will create)

Remote Host

Project 1 – Files for submission

• Syscalls you will modify the files
• Actual implementation

• linux-2.6.23.1/kernel/sys.c

• Syscall Number map
• linux-2.6.23.1/arch/i386/kernel/syscall_table.S

• Exposes syscall number to C programs
• linux-2.6.23.1/include/asm/unistd.h

• A header file named sem.h
• All required declarations into the file.
• Should be in the same folder as the test case file when compiling.

CS 1550
Week 4 – Project 1 Discussion

Teaching Assistant

Henrique Potter

