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Overview

• FUSE is a Linux kernel extension that allows for a user space program 
to provide the implementations for the various file-related syscalls

• Goal: Use FUSE to create our own file system
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What You Need To Do

• Create the cs1550 file system as a FUSE application 

• A code skeleton has been provided under the FUSE zip examples 
directory as cs1550.c 

• Automatically built when make

• Implement using a single file, named .disk  512-byte blocks
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• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular 

files. 

• The subdirectories will only contain regular files, and no subdirectories of 
their own. 
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File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular 

files. 

• The subdirectories will only contain regular files, and no subdirectories of 
their own. 

• All files will be full access with permissions to be mainly ignored. 

• Many file attributes such as creation and modification times will not be 
accurately stored. 

• The directory and file locations will be indexed.
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• CS1550.c
• Implements functions to intercept file system calls allowing us to create our 

own implementation for each call

• Runs in background
• Using “./CS1550 –d testmount” to run in front

• Communicate with .disk file to read/write file related data

• .Disk
• Virtual Disk where data is actually kept

• Consists of 512 bytes blocks

Overview: User Space File System



Access the .disk with CS1550.c
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• CS1550.c will read data from .disk
• Take system call requests

• Decide location of the file

• Using default system call (fopen/fseek/fread) to retrieve data needed

• Options to link to .disk
• Open and read on-demand

• Each time open the file and read then close

• Open in cs1550_init()
• Keeping file descriptor in a global variable

• Close in cs1550_destory

Access the .disk with CS1550.c



• CS1550.c will read data from .disk
• Take system call requests

• Decide location of the file

• Using default system call (fopen/fseek/fread) to retrieve data needed
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Disk Management

• Manage free (or empty) space using bitmap

• Each block indicated by a binary bit

• How large should it be
Disk: 5MB Block: 512Bytes => Number of Blocks: 5M/512 = 5 * 211

Size of bitmap: 5 * 211 bits => 5 * 28 Bytes = 2.5 Blocks = 3 Blocks

Checking the file system for consistency

Fall 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 70

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files



Disk Management

• Initialize data map
• The .disk will be all 0 at beginning

• However, we have our Root Directory, Bitmap space occupied

• Blocks holding our Root Directory, Bitmap must be set to 1



Disk Management

• Initialize data map
• The .disk will be all 0 at beginning

• However, we have our Root Directory, Bitmap space occupied

• Blocks holding our Root Directory, Bitmap must be set to 1

• Options
• Do it in main function

• Do it in CS1550_init
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• cs1550_getattr

• cs1550_mkdir 
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• cs1550_rmdir 

• cs1550_mknod 

• cs1550_write 

• cs1550_read 

• cs1550_unlink 

• cs1550_truncate 

• cs1550_open 

• cs1550_flush 

• cs1550_init

• cs1550_destory

Return errors based on project
description



Requirements and submission

• Well-commented cs1550.c

• Rubric

Item Grade 

cs1550_getattr 15% 

cs1550_mkdir 15% 

cs1550_readdir 15% 

cs1550_mknod 15% 

cs1550_write 15% 

cs1550_read 15% 

File System works correctly 10% 
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