
CS 1550
Week 14

–

Project 4

Teaching Assistant

Henrique Potter

Overview

• FUSE is a Linux kernel extension that allows for a user space program
to provide the implementations for the various file-related syscalls

• Goal: Use FUSE to create our own file system

Overview: User Space File System

ls
cat

echo
…

FUSE

User

Kernel

CS1550.c

System
calls

Will only work within the
mount point folder

Redirects to your own
implementation

What You Need To Do

• Create the cs1550 file system as a FUSE application

What You Need To Do

• Create the cs1550 file system as a FUSE application

• A code skeleton has been provided under the FUSE zip examples
directory as cs1550.c

What You Need To Do

• Create the cs1550 file system as a FUSE application

• A code skeleton has been provided under the FUSE zip examples
directory as cs1550.c

• Automatically built when make

What You Need To Do

• Create the cs1550 file system as a FUSE application

• A code skeleton has been provided under the FUSE zip examples
directory as cs1550.c

• Automatically built when make

• Implement using a single file, named .disk 512-byte blocks

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

\

Directory 1

Directory 2

Directory 3

Directory 4
.
.
.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

• The subdirectories will only contain regular files, and no subdirectories of
their own.

\

Directory 1

Directory 2

Directory 3

Directory 4

File 1

File 2
.
.
.

.

.

.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

• The subdirectories will only contain regular files, and no subdirectories of
their own.

• All files will be full access with permissions to be mainly ignored.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

• The subdirectories will only contain regular files, and no subdirectories of
their own.

• All files will be full access with permissions to be mainly ignored.

• Many file attributes such as creation and modification times will not be
accurately stored.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

• The subdirectories will only contain regular files, and no subdirectories of
their own.

• All files will be full access with permissions to be mainly ignored.

• Many file attributes such as creation and modification times will not be
accurately stored.

File System

• Two-level directory system
• The root directory “\” will only contain other subdirectories, and no regular

files.

• The subdirectories will only contain regular files, and no subdirectories of
their own.

• All files will be full access with permissions to be mainly ignored.

• Many file attributes such as creation and modification times will not be
accurately stored.

• The directory and file locations will be indexed.

Overview: User Space File System

ls
cat

echo
…

FUSE

User

Kernel

CS1550.c

System
calls

Will only work within the
mount point folder

Redirects to your own
implementation

Overview: User Space File System

ls
cat

echo
…

FUSE

User

Kernel

CS1550.c

System
calls

Will only work within the
mount point folder

Redirects to your own
implementation

.disk

• CS1550.c
• Implements functions to intercept file system calls allowing us to create our

own implementation for each call

• Runs in background
• Using “./CS1550 –d testmount” to run in front

• Communicate with .disk file to read/write file related data

• .Disk
• Virtual Disk where data is actually kept

• Consists of 512 bytes blocks

Overview: User Space File System

Access the .disk with CS1550.c

ls
cat

echo
…

FUSE

User

Kernel

CS1550.c

System
calls

Will only work within the
mount point folder

Redirects to your own
implementation

.disk

• CS1550.c will read data from .disk
• Take system call requests

• Decide location of the file

• Using default system call (fopen/fseek/fread) to retrieve data needed

• Options to link to .disk
• Open and read on-demand

• Each time open the file and read then close

• Open in cs1550_init()
• Keeping file descriptor in a global variable

• Close in cs1550_destory

Access the .disk with CS1550.c

• CS1550.c will read data from .disk
• Take system call requests

• Decide location of the file

• Using default system call (fopen/fseek/fread) to retrieve data needed

Access the .disk with CS1550.c

File System Structure

ls
cat

echo
…

FUSE

User

Kernel

CS1550.c

System
calls

Will only work within the
mount point folder

Redirects to your own
implementation

.disk

Structure

root

“dir1” 1

“dir2” 2

Structure: Root Directory

Structure: Root Directory

Number of subdir

Structure: Root Directory

Subdirs: name, addr

Structure: Root Directory

Padding for 512 bytes blocks

Structure

root

“dir1” 1

“dir2” 2

Structure

Dir1root

“dir1” 1

“dir2” 2

1

Structure

Dir1root

“dir1” 1

“dir2” 2

“File1” “txt” 3

“File2” “exe” 6

1

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

Index
Block For

File2

2 3 41 6

Structure: Subdirectory

Structure: Subdirectory

Number of Files

Structure: Subdirectory

File Table

Structure: Subdirectory

Padding

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

Index
Block For

File2

2 3 41 6

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

Index
Block For

File2

2 3 41 6

4

5

7

7

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

File1 File1 Index
Block For

File2

2 3 41 6

4

5

7

File1

7

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

File1 File1 Index
Block For

File2

2 3 41 6

4

5

7

File1

7

Data of File1

Structure: Index Block

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

File1 File1 Index
Block For

File2

2 3 41 6

4

5

7

File1

7

Data of File1

Structure

Dir1root

“dir1” 1

“dir2” 2

5

“File1” “txt” 3

“File2” “exe” 6

Dir2 Index
Block For

File1

File1 File1 Index
Block For

File2

2 3 41 6

4

5

7

File1

7

Data of File1

1 1 1 1 1 1 1 1 0 …

BitMap

Disk Management

• Manage free (or empty) space using bitmap

Checking the file system for consistency

Fall 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 70

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files

Disk Management

• Manage free (or empty) space using bitmap

• Each block indicated by a binary bit

Checking the file system for consistency

Fall 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 70

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files

Disk Management

• Manage free (or empty) space using bitmap

• Each block indicated by a binary bit

• How large should it be
Disk: 5MB Block: 512Bytes => Number of Blocks: 5M/512 = 5 * 211

Size of bitmap: 5 * 211 bits => 5 * 28 Bytes = 2.5 Blocks = 3 Blocks

Checking the file system for consistency

Fall 2018 CS/COE 1550 – Operating Systems – Sherif Khattab 70

Consistent Missing (“lost”) block

Duplicate block in free list Duplicate block in two files

Disk Management

• Initialize data map
• The .disk will be all 0 at beginning

• However, we have our Root Directory, Bitmap space occupied

• Blocks holding our Root Directory, Bitmap must be set to 1

Disk Management

• Initialize data map
• The .disk will be all 0 at beginning

• However, we have our Root Directory, Bitmap space occupied

• Blocks holding our Root Directory, Bitmap must be set to 1

• Options
• Do it in main function

• Do it in CS1550_init

Syscalls

• cs1550_getattr

• cs1550_mkdir

• cs1550_readdir

• cs1550_rmdir

• cs1550_mknod

• cs1550_write

• cs1550_read

• cs1550_unlink

• cs1550_truncate

• cs1550_open

• cs1550_flush

• cs1550_init

• cs1550_destory

Syscalls

• cs1550_getattr

• cs1550_mkdir

• cs1550_readdir

• cs1550_rmdir

• cs1550_mknod

• cs1550_write

• cs1550_read

• cs1550_unlink

• cs1550_truncate

• cs1550_open

• cs1550_flush

• cs1550_init

• cs1550_destory

Return errors based on project
description

Requirements and submission

• Well-commented cs1550.c

• Rubric

Item Grade

cs1550_getattr 15%

cs1550_mkdir 15%

cs1550_readdir 15%

cs1550_mknod 15%

cs1550_write 15%

cs1550_read 15%

File System works correctly 10%

CS 1550
Week 14

–

Project 4

Teaching Assistant

Henrique Potter

