CS 1550

Week 14

Project4

Teaching Assistant

Henrigue Potter

Overview

* FUSE is a Linux kernel extension that allows for a user space program
to provide the implementations for the various file-related syscalls

* Goal: Use FUSE to create our own file system

Overview: User Space File System

cat Will only work within the
echo mount point folder

User

Kernel |
Redirects to your own

implementation

calls

What You Need To Do

* Create the ¢s1550 file system as a FUSE application

What You Need To Do

* Create the cs1550 file system as a FUSE application

* A code skeleton has been provided under the FUSE zip examples
directory as ¢s1550.c

What You Need To Do

* Create the cs1550 file system as a FUSE application

* A code skeleton has been provided under the FUSE zip examples
directory as ¢s1550.c

* Automatically built when make

What You Need To Do

* Create the cs1550 file system as a FUSE application

* A code skeleton has been provided under the FUSE zip examples
directory as ¢s1550.c

e Automatically built when make
* Implement using a single file, named .disk 512-byte blocks

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

= Directory 1

= Directory 2

= Directory 3

- Directory 4

File System

* Two-level directory system
* The root directory “\” will only contain other subdirectories, and no regular

files.
* The subdirectories will only contain regular files, and no subdirectories of
their own.
\
= Directory 1
Directory 2
= Directory 3 — File 1

- Directory 4 L File 2

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

* The subdirectories will only contain regular files, and no subdirectories of
their own.

 All files will be full access with permissions to be mainly ignored.

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

* The subdirectories will only contain regular files, and no subdirectories of
their own.

 All files will be full access with permissions to be mainly ignored.

* Many file attributes such as creation and modification times will not be
accurately stored.

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

* The subdirectories will only contain regular files, and no subdirectories of
their own.

 All files will be full access with permissions to be mainly ignored.

* Many file attributes such as creation and modification times will not be
accurately stored.

File System

* Two-level directory system

* The root directory “\” will only contain other subdirectories, and no regular
files.

* The subdirectories will only contain regular files, and no subdirectories of
their own.

 All files will be full access with permissions to be mainly ignored.

* Many file attributes such as creation and modification times will not be
accurately stored.

* The directory and file locations will be indexed.

Overview: User Space File System

cat Will only work within the
echo mount point folder

User

Kernel |
Redirects to your own

implementation

calls

Overview: User Space File System

cat Will only work within the
echo mount point folder

User

Kernel |
Redirects to your own

implementation

calls

Overview: User Space File System

* C51550.c

* Implements functions to intercept file system calls allowing us to create our
own implementation for each call

* Runs in background
e Using “./CS1550 —d testmount” to run in front

 Communicate with .disk file to read/write file related data

 .Disk
* Virtual Disk where data is actually kept
* Consists of 512 bytes blocks

Access the .disk with CS1550.c

cat Will only work within the
echo mount point folder

User

Kernel |
Redirects to your own

implementation

calls

Access the .disk with CS1550.c

e CS1550.c will read data from .disk

* Take system call requests
* Decide location of the file
» Using default system call (fopen/fseek/fread) to retrieve data needed

e Options to link to .disk

* Open and read on-demand

* Each time open the file and read then close
e Open in cs1550 init()

* Keeping file descriptor in a global variable

* Close in cs1550_ destory

Access the .disk with CS1550.c

e CS1550.c will read data from .disk
* Take system call requests
* Decide location of the file
» Using default system call (fopen/fseek/fread) to retrieve data needed

File System Structure

User

Kernel

calls

Will only work within the
mount point folder

Redirects to your own
implementation

Structure

root

[\

“dirl” |1

“dir2” |2

Structure: Root Directory

struct cs1550 _root_directory

{

int

struct cs1550 directory

{
char [MAX_FILENAME + 1];
long ’
} __attribute__((packed)) [MAX_DIRS_IN_ROOT];

[BLOCK_SIZE - MAX_DIRS_IN_ROOT * sizeof(struct cs1550 _directory) - sizeof(int)];

Structure: Root Directory

truct cs1550 _root_directory

S
{

Number of subdir

char [MAX_FILENAME + 1];
long ;
__attribute__((packed)) [MAX_DIRS_IN_ROOT];

[BLOCK_SIZE - MAX_DIRS_IN_ROOT * sizeof(struct cs1550_directory) - sizeof(int)];

Structure: Root Directory

struct ¢s1550_root_directory
{
L

struct cs1550_directory

{
char [MAX_FILENAME + 1]; Subdirs: name, addr
long ;

} __attribute__((packed)) [MAX_DIRS_IN_ROOT];

[BLOCK_SIZE - MAX_DIRS_IN_ROOT * sizeof(struct cs1550_directory) - sizeof(int)];

Structure: Root Directory

struct ¢s1550_root_directory
{
L

int

struct cs1550_directory
{

char [MAX_FILENAME + 11];
long ;

!

} __attribute__((packed))

[MAX_DIRS_IN_ROOT];

[BLOCK_SIZE - MAX_DIRS_IN_ROOT * sizeof(struct cs1550_directory) - sizeof(int)];

Padding for 512 bytes blocks

Structure

root

[\

“dirl” |1

“dir2” |2

Structure

root Dirl

/ \

[\

“dirl” |1
“dir2” |2

Structure

root Dirl
/
1
“dirl”
“dir2”
“File1”] “txt”
“File2”] “exe”

Structure

root Dirl Dir2 Index Index
Block For Block For
Filel File2
/
1 2 3 6
“dirl”
“dir2”
“Filel”| “txt”

“File2”

o ”

exe

Structure: Subdirectory

truct cs1550_directory_entry

S
{

int

struct cs1550_file_directory
{
char [MAX_FILENAME + 1];
char [MAX_EXTENSION + 1];
size_t ;
long ;
__attribute__((packed)) [MAX_FILES_IN_DIR];

[BLOCK_SIZE - MAX_FILES_IN_DIR * sizeof(struct cs1550_file_directory) - sizeof(int)];

Structure: Subdirectory

struct cs1550_directory_entry
I

struct cs1550_file_directory

T
L

char [MAX_FILENAME + 1];

char [MAX_EXTENSION + 1];

size_t ;

long ;

__attribute__((packed)) [MAX_FILES_IN_DIR];

[BLOCK_SIZE - MAX_FILES_IN_DIR * sizeof(struct cs1550_file_directory) - sizeof(int)];

Structure: Subdirectory

truct cs1550_directory_entry

S
{

int

struct cs1550_file_directory
{
char [MAX_FILENAME + 1];
char [MAX_EXTENSION + 1]; File Table
size_t ;
long ;
__attribute__((packed)) [MAX_FILES_IN_DIR];

[BLOCK_SIZE - MAX_FILES_IN_DIR * sizeof(struct cs1550_file_directory) - sizeof(int)];

Structure: Subdirectory

truct cs1550_directory_entry

S
{

int

struct cs1550_file_directory
{
char [MAX_FILENAME + 1];
char [MAX_EXTENSION + 1];
size_t ;
long ;
__attribute__((packed)) [MAX_FILES_IN_DIR];

Padding

Structure

root Dirl Dir2 Index Index
Block For Block For
Filel File2
/
1 2 3 6
“dirl”
“dir2”
“Filel”| “txt”

“File2”

o ”

exe

Structure

4
5
root Dirl Dir2 \Index / Index
Block For Block For
Filel File2
/
1 2 3 6
“dirl”
“dir2”
“Filel”| “txt”

“File2”

o ”

exe

Structure

\ /

root

Dirl

Dir2

\ Index / Filel
Block For
Filel

“dirl”

“dir2”

“Filel”

IltXt ”

“File2”

o ”

exe

Filel

Index
Block For
File2

Filel

Structure

\

root

Dirl

Dir2

\

Index

Block For

Filel

“dirl”

“dir2”

“Filel”

IltXt ”

“File2”

o ”

exe

Data of Filel

Index
Block For
File2

Structure: Index Block

struct cs1550 disk block

{

[MAX_DATA_IN_BLOCK];

Structure

\

root

Dirl

Dir2

\

Index

Block For

Filel

“dirl”

“dir2”

“Filel”

IltXt ”

“File2”

o ”

exe

Data of Filel

Index
Block For
File2

Structure

\

root

Dirl

Dir2

\

Index

Block For

Filel

“dirl”

“dir2”

“Filel”

IItXt”

“File2”

o V4

exe

Data of Filel

Index
Block For
File2

BitMap

Disk Management

* Manage free (or empty) space using bitmap

0

0

1

0

|

0

0

0

0

i

1

0

0

0

1

1

(@)

Free blocks

Disk Management

* Manage free (or empty) space using

0

0

1

0

|

0

0

0

0

i

1

0

(@)

* Each block indicated by a binary bit

Free blocks

Disk Management

* Manage free (or empty) space using bitmap

0|0]11]0|1]0|0]0|0|1|1110]|0]|0|1]1|Free blocks

(@)

* Each block indicated by a binary bit

* How large should it be
Disk: 5MB Block: 512Bytes => Number of Blocks: 5M/512 =5 * 211
Size of bitmap: 5 * 2! bits => 5 * 28 Bytes = 2.5 Blocks = 3 Blocks

Disk Management

* Initialize data map
* The .disk will be all 0 at beginning
 However, we have our Root Directory, Bitmap space occupied
* Blocks holding our Root Directory, Bitmap must be setto 1

Disk Management

* Initialize data map
* The .disk will be all 0 at beginning
 However, we have our Root Directory, Bitmap space occupied
* Blocks holding our Root Directory, Bitmap must be setto 1

* Options
e Do it in main function
* Doitin CS1550 init

Syscalls

* ¢s1550 getattr
e ¢s1550_mkdir
e ¢s1550 readdir
e ¢s1550 rmdir

* ¢s1550 _mknod
e ¢s1550 write

* ¢s1550 read

* ¢s1550 unlink
* ¢s1550 truncate
* ¢s1550 open

e ¢s1550 flush

* ¢s1550 init

e ¢s1550_ destory

Syscalls

* ¢s1550 getattr
e ¢s1550_mkdir
e ¢s1550 readdir
e ¢s1550 rmdir

* ¢s1550 _mknod
e ¢s1550 write

* ¢s1550 read

* ¢s1550 unlink
* ¢s1550 truncate
* ¢s1550 open

e ¢s1550 flush

* ¢s1550 init

e ¢s1550_ destory

Return errors based on project
description

Reqguirements and submission

e Well-commented cs1550.c
e Rubric

ltem Grade

cs1550 getattr 15%
cs1550 mkdir 15%
cs1550 readdir 15%
cs1550 mknod 15%
cs1550 write 15%
cs1550 read 15%
File System works correctly 10%

CS 1550

Week 14

Project4

Teaching Assistant

Henrigue Potter

