CS 1550

Week 13

Lab 5

Teaching Assistant

Henrigue Potter

Lab 5 — Bigger Files for xv6

* Reuse xvb gemu
* Changing how xv6 organizes file blocks in the inode

Lab 5 — Bigger Files for xv6

e Current implementation limit files to 72 KB

Disk Sectors

0 xv6 Can only map 140 sectors

1

2

139

Lab 5 — Bigger Files for xv6

e Current implementation limit files to 72 KB

Disk Sectors

0 :l- 512 bytes
1

2

139

Lab 5 — Bigger Files for xv6

e Current implementation limit files to 72 KB

Disk Sectors

0 512 bytes

1

71 680 bytes

2

139

Lab 5 — Bigger Files for xv6

e Current implementation limit files to 72 KB

Disk Sectors

0 512 bytes
1 We want it to be able to
) 71 680 bytes map more then 140

sectors/data blocks.

139

Lab 5 — Bigger Files for xv6

* This limit is based in the current implementation of direct and indirect
references you can use in the inode.

Lab 5 — Bigger Files for xv6

* This limit is based in the current implementation of direct and indirect
references you can use in the inode.

* We can modify xv6 to be able to map bigger files by adding a double
indirect reference in its inode.

Lab 5 — Bigger Files for xv6

* This limit is based in the current implementation of direct and indirect
references you can use in the inode.

* We can modify xv6 to be able to map bigger files by adding a double
indirect reference in its inode.

* xvb6 file system is similar to Unix Fast File System (FFS) or (UFS)

Lab 5 — xv6 Unix Fast File System

iIlOde Every file have an inode

/ that holds its metadata

metadata

Lab 5 — xv6 Unix Fast File System

iIlOde Every file have an inode

/ that holds its metadata

It also maps where to find in
disk the blocks of data that
compose that file

metadata

Lab 5 — xv6 Unix Fast File System

inode

metadata

some_file.some_extesion

Lab 5 — xv6 Unix Fast File System

inode

metadata

_ 4

some_file.some_extesion

Lab 5 — xv6 Unix Fast File System

inode

metadata

y
some_file.some_extesion Saved as data blocks of 512

bytes. (each data block is a
disk sector)

Lab 5 — xv6 Unix Fast File System

inode

Lab 5 — xv6 Unix Fast File System

inode

Lab 5 — xv6 Unix Fast File System

inode

Referred in the Lab 5
description as the
disk sectors

Lab 5 — xv6 Unix Fast File System

inode '

Lab 5 — xv6 Unix Fast File System

Another table of pointers to

actual data addresses in disk \

inode

n
>

Lab 5 — xv6 Unix Fast File System

In xv6 this guy holds 128 blocks

T

inode

n
>

In xv6 you can have
12 direct pointers

Lab 5 — xv6 Unix Fast File System

inode '

The lab task is to
increaseistoadda 7
double indirect

block

Lab 5 — xv6 Unix Fast File System

inode

Each pointer will
point to a table of

single indirect
pointers

Lab 5 — xv6 Unix Fast File System

inode '
:I T
And each pointer from

this table table to actual
physical blocks

Lab 5 — xv6 Unix Fast File System

inode '
:I T

And each pointer from
this table table to actual
physical blocks

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
.

Lab 5 — xv6 Unix Fast File System

inode

.
L
J

y \4 v
—1
! I

a
.

\ 4 \ 4 \ 4 v v v
.....

Lab 5 — xv6 Unix Fast File System

inode '
:I T

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
.

Lab 5 goal

It will allow us to map files up to 8.5 MB

Lab 5 — Bigger Files for xv6

* Important xv6 files for this lab are:
* fs.h — defines the number of direct blocks
* fs.c— bmap()
* file.h —inode struct

Lab 5 — Bigger Files for xv6

* gemu optimizations
* Modify the xv6 makefile
* CPUS:=1
* QEMUESTRA = -snapshot

Lab 5 — Bigger Files for xv6

* gemu optimizations
* Modify the xv6 makefile
« CPUS:=1
* QEMUESTRA = -snapshot
 Param.h
* FSSIZE = 20000

Lab 5 — Bigger Files for xv6

* gemu optimizations
* Modify the xv6 makefile
« CPUS:=1
* QEMUESTRA = -snapshot
 Param.h
* FSSIZE = 20000

* Copy big.c

* Will attempt to create a big file and will use as many sectors it could use to
create it

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

* In the bmap() from the fs.c file

i;‘.((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

}

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

* In the bmap() from the fs.c file

i;‘.((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

}

Blocks are not immediately
written to disk

-

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

* In the end_op(void) from the log.c file

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

* In the end_op(void) from the log.c file

-

At the end of all FS system calls
end_op is called and commits
all pending disk writes

commit();

Lab 5 — Bigger Files for xv6

* Writes to disk are delayed and will be written in batch once disk
operations are done

* In the commit(void) from the log.c file
commit()
{

if (log.lh.n>0)

write_head(); // Write header to disk -- the real commit

Lab 5 — xv6 Unix Fast File System

inode '
:I T

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
.

Lab 5 goal

It will allow us to map files up to 8.5 MB

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn) \

uint addr, *a;
struct buf *bp;

if(bn < NDIRECT){
ip->addrs[bn] = addr = balloc(ip->dev);
return addr;

)

inode

metadata

\

139

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;

struct buf *bp; /
if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0)
ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

)

139

inode

metadata

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;
struct buf *bp;

Is the pointer
empty?

if(bn < NDIRECT){ /
if((addr = ip->addrs[bn]) == 0)
ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

)

139

inode

metadata

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;

struct buf *bp i emory
block
if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0) f

ip->addrs[bn] = addr = balloc(ip->dev);
return addr;

)

139

inode

metadata

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;
struct buf *bp;

if(bn < NDIRECT){ /

-

11

—

139

inode

metadata

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;
struct buf *bp;

if(bn < NDIRECT){ /

11

bn -= NDIRECT;
if(bn < NDINDIRECT){

139

inode

metadata

— -
g i
o it

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;
struct buf *bp;

if(bn < NDIRECT){

bn -= NDlRECT, /

if(bn < NDINDIRECT){

{

139

inode

metadata

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)
uint addr, *a;
struct buf *bp;

12
if(bn < NDIRECT){

We map 12-139
if(bn < NDINDIRECT){ to 0 - 127

139

Only holds 128

inode

metadata

N
—8

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c

file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = ballo

bp = bread(ip->dev, addr);
a = (uint*)bp->data;

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

m\

Only holds 128

inode

metadata

N
—8

139

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);
a = (uint*)bp->data;

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

139

Only holds 128

inode

metadata

N
—8

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);
a = (uint*)bp->data;

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

139

inode

metadata

Only holds 128

N
—8

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);
a = (uint*)bp->data;

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

139

Only holds 128

inode

metadata

N
—8

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);
a = (uint*)bp->data;

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

139

inode

metadata

Only holds 128

N
—8

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)
ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

) We are checking if

if((addr = a[bn]) == O the index in the
a[bn] = addr = balloc(ip->dev); block from the

139

inode

metadata

Only holds 128

N
i

table we just read

log_write(bp); is empty

Lab 5 — Bigger Files for xv6

* In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

}

brelse(bp);

return addr;

139

Only holds 128

inode

metadata

N
—8

Lab 5 — Bigger Files for xv6 — hints

* If you change the definition of NDIRECT, you'll probably have to
change the size of addrs|[] in struct inode in file.h. Make sure that
struct inode and struct dinode have the same number of elements in

their addrs[] arrays.

// in-memory copy of an inode
struct inode {

uint dewv; // Dewvice number

uint inum; // Inode number

int ref; // Reference count

struct sleeplock lock; // protects everything below here
int walid; // inode has been read from disk?
short type; // copy of disk inode

short major;

short minor;

short nlink;

uint size;
| uint addrs[NDIRECT+.]; |
}i

Lab 5 — Bigger Files for xv6 — hints

* If you change the definition of NDIRECT, make sure to create a new
fs.img, since mkfs uses NDIRECT too to build the initial file systems. If
you delete fs.img, make on Unix (not xv6) will build a new one for
you.

* If your file system gets into a bad state, perhaps by crashing, delete
fs.img (do this from Unix, not xv6). make will build a new clean file
system image for you.

* Don't forget to brelse() each block that you bread(). brelse() releases
the buffer cache for the block (check bio.c).

Lab 5 — Bigger Files for xv6 — bmap()

* If all goes well, big will now report that it can write 16523 sectors. It
will take big a few dozen seconds to finish.

e 11+128+128*128

Project 4 — Discussion

e Use FUSE to create our own file system.
* A file will represent our disk device.

Project 4 — Discussion

* FUSE Setup
* cd /u/OSLab/USERNAME
* cp /u/OSLab/original/fuse-2.7.0.tar.gz .
 tar xvfz fuse-2.7.0.tar.gz
e cd fuse-2.7.0
 ./configure
* make

Project 4 — Discussion

* FUSE Setup
* cd /u/OSLab/USERNAME
* cp /u/OSLab/original/fuse-2.7.0.tar.gz .
tar xvfz fuse-2.7.0.tar.gz
cd fuse-2.7.0
.[configure
make

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

5MB

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

512 B
A

5MB

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

5MB

0(0|0| 0| Bitmap

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

0(0|0| 0| Bitmap

Lab 5 — Discussion

 Allocating blocks

if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);

}

brelse(bp);

return addr;

139

inode

Only holds 128

N
—8

Project 4 — Discussion

» Keep track of free / allocated memory regions with a bitmap
* One bit in map corresponds to a fixed-size region of memory

* Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

5MB

Used blocks are -
marked with a 1 bit 110({1]|0| Bitmap

CS 1550

Week 13

Lab 5

Teaching Assistant

Henrigue Potter

