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Lab 5 – Bigger Files for xv6

• Reuse xv6 qemu

• Changing how xv6 organizes file blocks in the inode
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• Current implementation limit files to 72 KB
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We want it to be able to 
map more then 140 
sectors/data blocks.
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references you can use in the inode.
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Lab 5 – Bigger Files for xv6

• This limit is based in the current implementation of direct and indirect 
references you can use in the inode.

• We can modify xv6 to be able to map bigger files by adding a double 
indirect reference in its inode.

• xv6 file system is similar to Unix Fast File System (FFS) or (UFS)
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inode

metadata

Every file have an inode
that holds its metadata

It also maps where to find in 
disk the blocks of data that 
compose that file
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some_file.some_extesion Saved as data blocks of 512 
bytes. (each data block is a 

disk sector) 
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Lab 5 – xv6 Unix Fast File System 
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Direct pointers...
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Another table of pointers to 
actual data addresses in disk
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In xv6 this guy holds 128 blocks

In xv6 you can have 
12 direct pointers 
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pointers
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Lab 5 – Bigger Files for xv6

• Important xv6 files for this lab are:
• fs.h – defines the number of direct blocks

• fs.c – bmap()

• file.h – inode struct
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• QEMUESTRA = -snapshot
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Lab 5 – Bigger Files for xv6

• qemu optimizations
• Modify the xv6 makefile

• CPUS := 1

• QEMUESTRA = -snapshot

• Param.h
• FSSIZE = 20000

• Copy big.c
• Will attempt to create a big file and will use as many sectors it could use to 

create it
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• Writes to disk are delayed and will be written in batch once disk 
operations are done
• In the bmap() from the fs.c file

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

…

Blocks are not immediately 
written to disk
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Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk 
operations are done
• In the end_op(void) from the log.c file

…

commit();

…

At the end of all FS system calls 
end_op is called and commits 
all pending disk writes



Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk 
operations are done
• In the commit(void) from the log.c file

commit()

{

if (log.lh.n > 0) 

…

write_head();    // Write header to disk -- the real commit

…

}
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• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;
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• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

if((addr = ip->addrs[bn]) == 0)

ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

}

…
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If it is empty 
create a new 

block 
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• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

11



Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

12



Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){
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Only holds 128

We map  12 - 139 
to 0 - 127
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• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);
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log_write(bp);
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• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){
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log_write(bp);

}
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We are checking if 
the index in the 
block from the 
table we just read 
is empty
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• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

brelse(bp);

return addr;
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• If you change the definition of NDIRECT, you'll probably have to 
change the size of addrs[] in struct inode in file.h. Make sure that 
struct inode and struct dinode have the same number of elements in 
their addrs[] arrays. 

Lab 5 – Bigger Files for xv6 – hints



• If you change the definition of NDIRECT, make sure to create a new 
fs.img, since mkfs uses NDIRECT too to build the initial file systems. If 
you delete fs.img, make on Unix (not xv6) will build a new one for 
you. 

• If your file system gets into a bad state, perhaps by crashing, delete 
fs.img (do this from Unix, not xv6). make will build a new clean file 
system image for you. 

• Don't forget to brelse() each block that you bread(). brelse() releases 
the buffer cache for the block (check bio.c). 

Lab 5 – Bigger Files for xv6 – hints



• If all goes well, big will now report that it can write 16523 sectors. It 
will take big a few dozen seconds to finish. 
• 11 + 128 + 128*128

Lab 5 – Bigger Files for xv6 – bmap()



Project 4 – Discussion 

• Use FUSE to create our own file system.

• A file will represent our disk device.
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• cp /u/OSLab/original/fuse-2.7.0.tar.gz .

• tar xvfz fuse-2.7.0.tar.gz

• cd fuse-2.7.0

• ./configure 

• make
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is allocated at a particular time
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Lab 5 – Discussion

• Allocating blocks

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

brelse(bp);

return addr;
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Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much 
is allocated at a particular time

1 0 1 0 Bitmap
Used blocks are 
marked with a 1 bit

5MB
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