
CS 1550
Week 13

–

Lab 5

Teaching Assistant

Henrique Potter

Lab 5 – Bigger Files for xv6

• Reuse xv6 qemu

• Changing how xv6 organizes file blocks in the inode

Lab 5 – Bigger Files for xv6

• Current implementation limit files to 72 KB

0

1

2

…

139

Disk Sectors

xv6 Can only map 140 sectors

Lab 5 – Bigger Files for xv6

• Current implementation limit files to 72 KB

0

1

2

…

139

512 bytes

Disk Sectors

Lab 5 – Bigger Files for xv6

• Current implementation limit files to 72 KB

0

1

2

…

139

512 bytes

71 680 bytes

Disk Sectors

Lab 5 – Bigger Files for xv6

• Current implementation limit files to 72 KB

0

1

2

…

139

512 bytes

71 680 bytes

Disk Sectors

We want it to be able to
map more then 140
sectors/data blocks.

Lab 5 – Bigger Files for xv6

• This limit is based in the current implementation of direct and indirect
references you can use in the inode.

Lab 5 – Bigger Files for xv6

• This limit is based in the current implementation of direct and indirect
references you can use in the inode.

• We can modify xv6 to be able to map bigger files by adding a double
indirect reference in its inode.

Lab 5 – Bigger Files for xv6

• This limit is based in the current implementation of direct and indirect
references you can use in the inode.

• We can modify xv6 to be able to map bigger files by adding a double
indirect reference in its inode.

• xv6 file system is similar to Unix Fast File System (FFS) or (UFS)

Lab 5 – xv6 Unix Fast File System

inode

metadata

Every file have an inode
that holds its metadata

Lab 5 – xv6 Unix Fast File System

inode

metadata

Every file have an inode
that holds its metadata

It also maps where to find in
disk the blocks of data that
compose that file

Lab 5 – xv6 Unix Fast File System

inode

metadata

some_file.some_extesion

Lab 5 – xv6 Unix Fast File System

inode

metadata

data

data

data...

...

data

some_file.some_extesion

Lab 5 – xv6 Unix Fast File System

inode

metadata

data

data

data...

...

data

some_file.some_extesion Saved as data blocks of 512
bytes. (each data block is a

disk sector)

Lab 5 – xv6 Unix Fast File System

metadata

Direct pointers...

inode

metadata

Lab 5 – xv6 Unix Fast File System

Direct pointers...

inode

data

data

data...

...

data

Lab 5 – xv6 Unix Fast File System

metadata

Direct pointers...

inode

data

data

data...

...

data

Referred in the Lab 5
description as the

disk sectors

Lab 5 – xv6 Unix Fast File System

metadata
•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

•
•

metadata

Lab 5 – xv6 Unix Fast File System

•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

•
•

Another table of pointers to
actual data addresses in disk

metadata

Lab 5 – xv6 Unix Fast File System

•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

•
•

In xv6 this guy holds 128 blocks

In xv6 you can have
12 direct pointers

metadata

Lab 5 – xv6 Unix Fast File System

•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

•
•

The lab task is to
increase is to add a
double indirect
block

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

double indirect

•
•

•
•

Each pointer will
point to a table of
single indirect
pointers

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•

Direct pointers...

inode

data

data

data

data

...

...

data

single indirect

double indirect

•
•

•
• •

•

•
•

And each pointer from
this table table to actual
physical blocks

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•

Direct pointers...

inode

data

data

data

data

data

data

...

...

...

data

single indirect

double indirect

•
•

•
• •

•

•
•

And each pointer from
this table table to actual
physical blocks

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•
•

•

Direct pointers...

inode

data

data

data

data

data

data

data

data

...

...

...

...

data

single indirect

double indirect

triple indirect

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•

Direct pointers...

inode

data

data

data

data

data

data

...

...

...

data

single indirect

double indirect

•
•

•
• •

•

•
•

It will allow us to map files up to 8.5 MB

Lab 5 goal

Lab 5 – Bigger Files for xv6

• Important xv6 files for this lab are:
• fs.h – defines the number of direct blocks

• fs.c – bmap()

• file.h – inode struct

Lab 5 – Bigger Files for xv6

• qemu optimizations
• Modify the xv6 makefile

• CPUS := 1

• QEMUESTRA = -snapshot

Lab 5 – Bigger Files for xv6

• qemu optimizations
• Modify the xv6 makefile

• CPUS := 1

• QEMUESTRA = -snapshot

• Param.h
• FSSIZE = 20000

Lab 5 – Bigger Files for xv6

• qemu optimizations
• Modify the xv6 makefile

• CPUS := 1

• QEMUESTRA = -snapshot

• Param.h
• FSSIZE = 20000

• Copy big.c
• Will attempt to create a big file and will use as many sectors it could use to

create it

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done
• In the bmap() from the fs.c file

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

…

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done
• In the bmap() from the fs.c file

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

…

Blocks are not immediately
written to disk

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done
• In the end_op(void) from the log.c file

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done
• In the end_op(void) from the log.c file

…

commit();

…

At the end of all FS system calls
end_op is called and commits
all pending disk writes

Lab 5 – Bigger Files for xv6

• Writes to disk are delayed and will be written in batch once disk
operations are done
• In the commit(void) from the log.c file

commit()

{

if (log.lh.n > 0)

…

write_head(); // Write header to disk -- the real commit

…

}

metadata

Lab 5 – xv6 Unix Fast File System

•
•

•

Direct pointers...

inode

data

data

data

data

data

data

...

...

...

data

single indirect

double indirect

•
•

•
• •

•

•
•

It will allow us to map files up to 8.5 MB

Lab 5 goal

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

if((addr = ip->addrs[bn]) == 0)

ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

}

…

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

if((addr = ip->addrs[bn]) == 0)

ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

}

…

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

if((addr = ip->addrs[bn]) == 0)

ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

}

…

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

Is the pointer
empty?

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

if((addr = ip->addrs[bn]) == 0)

ip->addrs[bn] = addr = balloc(ip->dev);

return addr;

}

…

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

If it is empty
create a new

block

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

11

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

11

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){

metadata

Direct pointers...

inode

single indirect

double indirect

0

1

2

…

139

12

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

bmap(struct inode *ip, uint bn)

uint addr, *a;

struct buf *bp;

if(bn < NDIRECT){

…

bn -= NDIRECT;

if(bn < NDINDIRECT){

0

1

2

…

139

12

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

We map 12 - 139
to 0 - 127

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

if((addr = ip->addrs[NDIRECT+1]) == 0)

ip->addrs[NDIRECT+1] = addr = balloc(ip->dev);

bp = bread(ip->dev, addr);

a = (uint*)bp->data;

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

We are checking if
the index in the
block from the
table we just read
is empty

Lab 5 – Bigger Files for xv6

• In the bmap() from the fs.c file

// Load indirect block, allocating if necessary.

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

brelse(bp);

return addr;

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

• If you change the definition of NDIRECT, you'll probably have to
change the size of addrs[] in struct inode in file.h. Make sure that
struct inode and struct dinode have the same number of elements in
their addrs[] arrays.

Lab 5 – Bigger Files for xv6 – hints

• If you change the definition of NDIRECT, make sure to create a new
fs.img, since mkfs uses NDIRECT too to build the initial file systems. If
you delete fs.img, make on Unix (not xv6) will build a new one for
you.

• If your file system gets into a bad state, perhaps by crashing, delete
fs.img (do this from Unix, not xv6). make will build a new clean file
system image for you.

• Don't forget to brelse() each block that you bread(). brelse() releases
the buffer cache for the block (check bio.c).

Lab 5 – Bigger Files for xv6 – hints

• If all goes well, big will now report that it can write 16523 sectors. It
will take big a few dozen seconds to finish.
• 11 + 128 + 128*128

Lab 5 – Bigger Files for xv6 – bmap()

Project 4 – Discussion

• Use FUSE to create our own file system.

• A file will represent our disk device.

Project 4 – Discussion

• FUSE Setup
• cd /u/OSLab/USERNAME

• cp /u/OSLab/original/fuse-2.7.0.tar.gz .

• tar xvfz fuse-2.7.0.tar.gz

• cd fuse-2.7.0

• ./configure

• make

Project 4 – Discussion

• FUSE Setup
• cd /u/OSLab/USERNAME

• cp /u/OSLab/original/fuse-2.7.0.tar.gz .

• tar xvfz fuse-2.7.0.tar.gz

• cd fuse-2.7.0

• ./configure

• make

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

5MB

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

5MB

512 B

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

0 0 0 0 Bitmap

5MB

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

0 0 0 0 Bitmap

5MB

Lab 5 – Discussion

• Allocating blocks

…

if((addr = a[bn]) == 0){

a[bn] = addr = balloc(ip->dev);

log_write(bp);

}

brelse(bp);

return addr;

0

1

2

…

139

metadata

•Direct pointers...

inode

single indirect

double indirect

•
•

Only holds 128

Project 4 – Discussion

• Keep track of free / allocated memory regions with a bitmap
• One bit in map corresponds to a fixed-size region of memory

• Bitmap is a constant size for a given amount of memory regardless of how much
is allocated at a particular time

1 0 1 0 Bitmap
Used blocks are
marked with a 1 bit

5MB

CS 1550
Week 13

–

Lab 5

Teaching Assistant

Henrique Potter

