

CS/COE 1550 – Introduction to Operating Systems

 1

Project 4: File System Implementation1

Submit a gzipped tarball of your code to CourseWeb.

Due (Dr. Mosse Section): Saturday, April 25, 2020 @11:59pm
Due (Dr. Lee Section): Friday, April 24, 2020 @11:59pm
Late (Dr. Mosse Section): Tuesday, April 28, 2020 @11:59pm with 10% reduction per late day
Late (Dr. Lee Section): Sunday, April 26, 2020 @11:59pm with 10% reduction per late day

Table of Contents

PROJECT OVERVIEW .. 2

PROJECT DETAILS ... 2

INSTALLATION OF FUSE .. 2
SETTING UP THE ENVIRONMENT VARIABLES .. 3
FIRST FUSE EXAMPLE ... 3
FUSE HIGH-LEVEL DESCRIPTION ... 4
WHAT YOU NEED TO DO... 4
DISK MANAGEMENT ... 5
ROOT DIRECTORY .. 5
SUBDIRECTORIES .. 6
FILES ... 6
SYSCALLS .. 7
BUILDING AND TESTING .. 9
NOTES AND HINTS ... 10
FILE BACKUPS ... 10

REQUIREMENTS AND SUBMISSION .. 11

GRADING SHEET/RUBRIC ... 11

1 Based upon Project 4 of Dr. Misurda's CS 1550 course.

CS/COE 1550 – Introduction to Operating Systems

 2

Project Overview

FUSE (http://fuse.sourceforge.net/) is a Linux kernel extension that allows for a user space program to
provide the implementations for the various file-related syscalls. We will be using FUSE to create our
own file system, managed via a single file that represents our disk device. Through FUSE and our
implementation, it will be possible to interact with our newly created file system using standard
UNIX/Linux programs in a transparent way.

From an interface perspective, our file system will be a two-level directory system, with the following
restrictions/simplifications:

1. The root directory “/” will only contain other subdirectories, and no regular files.

2. The subdirectories will only contain regular files, and no subdirectories of their own.

3. All files will be full access (i.e., chmod 0666), with permissions to be mainly ignored.

4. Many file attributes such as creation and modification times will not be accurately stored.

5. Files cannot be truncated.

From an implementation perspective, the file system will keep data on “disk” via an indexed allocation
strategy, outlined below.

Project Details

Installation of FUSE

FUSE consists of two major components: a kernel module that has already been installed, and a set of
libraries and example programs that you need to install.

First, copy the source code to your /u/OSLab/USERNAME directory

cd /u/OSLab/USERNAME
cp /u/OSLab/original/fuse-2.7.0.tar.gz .
tar xvfz fuse-2.7.0.tar.gz
cd fuse-2.7.0

Now, we do the normal configure, compile, install procedure on UNIX, but omit the install step since
that needs to be done as a superuser and has already been done.

./configure
make

http://fuse.sourceforge.net/

CS/COE 1550 – Introduction to Operating Systems

 3

(The third step would be make install, but if you try it, you will be met with many access denied
errors.)

Setting up the Environment Variables

 To be able to use fuse, you will need to do the following for it to work properly. Please enter the
following commands after you first log in into thoth.cs.pitt.edu:

cd ~
chmod u+w .bash_profile
nano .bash_profile

This will give you write permissions to .bash_profile and open the nano editor. Now scroll down to the
end of the file until you see the line:

Define your own private shell functions and other commands here

Add the following lines (spacing around the ‘[‘ and ‘]’ characters need to be there!):

if ["$HOSTNAME" = "thoth.cs.pitt.edu"]; then
source /opt/set_specific_profile.sh;
fi

Save the file and quit. Basically, you are directing the .bash_profile script to run another script located in
/opt/set_specific_profile.sh, which if you look inside it, sets up the PATH environment variable.

Lastly, remove write permissions from .bash_profile for safety using the following command.

chmod u-w .bash_profile

Now, .bash_profile will not run until the next time you log in, so let’s force run the script so that it is
applied to this login session. Run the following command:

source /opt/set_specific_profile.sh

First FUSE Example

Let us now walk through one of the examples. Enter the following:

cd /u/OSLab/USERNAME/
cd fuse-2.7.0/example
mkdir testmount
ls -al testmount
./hello testmount

CS/COE 1550 – Introduction to Operating Systems

 4

ls -al testmount

You should see 3 entries: ., .., and hello. We just created this directory, and thus it was empty, so
where did hello come from? Obviously, the hello application we just ran could have created it, but
what it actually did was lie to the operating system when the OS asked for the contents of that
directory. So, let’s see what happens when we try to display the contents of the file.

cat testmount/hello

You should get the familiar hello world quotation. If we cat a file that doesn’t really exist, how do we
get meaningful output? The answer comes from the fact that the hello application also gets notified of
the attempt to read and open the fictional file “hello” and thus can return the data as if it was really
there.

Examine the contents of hello.c in your favorite text editor, and look at the implementations
of readdir and read to see that it is just returning hard coded data back to the system.

The final thing we always need to do is to unmount the file system we just used when we are done or
need to make changes to the program. Do so by:

fusermount -u testmount

FUSE High-level Description

The hello application we ran in the above example is a particular FUSE file system provided as a sample
to demonstrate a few of the main ideas behind FUSE. The first thing we did was to create an empty
directory to serve as a mount point. A mount point is a location in the UNIX hierarchical file system
where a new device or file system is located. As an analogy, in Windows, “My Computer” is the mount
point for your hard disks and CD-ROMs, and if you insert a USB drive or MP3 player, it will show up there
as well. In UNIX, we can have mount points at any location in the file system tree.

Running the hello application and passing it the location of where we want the new file system
mounted initiates FUSE and tells the kernel that any file operations that occur under our now mounted
directory will be handled via FUSE and the hello application. When we are done using this file system,
we simply tell the OS that it no longer is mounted by issuing the above fusermount -u command. At
that point the OS goes back to managing that directory by itself.

What You Need to Do

Your job is to create the cs1550 file system as a FUSE application that provides the interface described in
the first section of this document. A code skeleton has been provided under the examples directory
as cs1550.c. It is automatically built when you type make in the examples directory.

CS/COE 1550 – Introduction to Operating Systems

 5

The cs1550 file system should be implemented using a single file, named .disk and managed by the
real file system in the directory that contains the cs1550 application. This file should keep track of the
directories and the file data. We will consider the disk to have 512-byte blocks.

Disk Management

In order to manage the free (or empty) space, you will need to create bookkeeping block(s) in .disk
that records what blocks have been previously allocated or not. Use a bitmap as we have discussed in
class.

To create a 5MB disk image, execute the following:

dd bs=1K count=5K if=/dev/zero of=.disk

This will create a file initialized to contain all zeros, named .disk. You only need to do this once, or
every time you want to completely destroy the disk. (This is our “format” command.)

Root Directory

Since the disk contains blocks that are directories and blocks that are file data, we need to be able to
find and identify what a particular block represents. In our file system, the root only contains other
directories, so we will use block 0 of .disk to hold the directory entry of the root and, from there, find
our subdirectories.

The root directory entry will be a struct defined as below (the actual one we provide in the code has
additional attributes and padding to force the structure to be 512 bytes):

struct cs1550_root_directory
{
 int nDirectories; //How many subdirectories are in the root
 //Needs to be less than MAX_DIRS_IN_ROOT
 struct cs1550_directory
 {
 char dname[MAX_FILENAME + 1]; //directory name (plus space for nul)
 long nStartBlock; //where the directory block is on disk
 } directories[MAX_DIRS_IN_ROOT]; //There is an array of these
} ;

Since we are limiting our root to be one block in size, there is a limit on how many subdirectories we can
create, MAX_DIRS_IN_ROOT. Each subdirectory will have an entry in the directories array with its name
and the block index of the subdirectory’s directory entry.

CS/COE 1550 – Introduction to Operating Systems

 6

Subdirectories

Directories will be stored in our .disk file as a single block-sized cs1550_directory_entry structure per
subdirectory. The structure is defined below (again the actual one we provide in the code has additional
attributes and padding to force the structure to be 512 bytes):

struct cs1550_directory_entry
{
 int nFiles; //How many files are in this directory.
 //Needs to be less than MAX_FILES_IN_DIR

 struct cs1550_file_directory
 {
 char fname[MAX_FILENAME + 1]; //filename (plus space for nul)
 char fext[MAX_EXTENSION + 1]; //extension (plus space for nul)
 size_t fsize; //file size
 long nIndexBlock; //where the index block is on disk
 } files[MAX_FILES_IN_DIR]; //There is an array of these
};

Since we require each directory entry to only take up a single disk block, we are limited to a fixed
number of files per directory. Each file entry in the directory has a filename in 8.3 (name.extension)
format. We also need to record the total size of the file, and the location of the file’s first block on disk.

Files

Files will be stored alongside the directories in the .disk. The size of the index and data blocks is 512
bytes. The index block is a struct of the format:

struct cs1550_index_block
{
 //All the space in the index block can be used for index entries. Each index
 //entry is a data block number.
 long entries[MAX_ENTRIES_IN_INDEX_BLOCK];
};

The data block is a struct of the format:

struct cs1550_disk_block
{
 //All the space in the block can be used for actual data
 //storage.
 char data[MAX_DATA_IN_BLOCK];
};

CS/COE 1550 – Introduction to Operating Systems

 7

This is how the resulting system is logically structured:

The root points to directory dir1, which has three files, File A, File B and File C, each having its own index
block. File B has two data blocks. Both File A and File C have one data block each.

Syscalls

To be able to have a simple functioning file system, we need to handle a minimum set of operations on
files and directories. The functions are listed here in the order that we suggest you implement them
in. The last three do not need implemented beyond what the skeleton code has already.

The syscalls need to return success or failure. Success is indicated by 0 and appropriate errors by the
negation of the error code, as listed on the corresponding function’s man page.

CS/COE 1550 – Introduction to Operating Systems

 8

cs1550_getattr Description: This function should look up the input path to determine if it
is a directory or a file. If it is a directory, return the
appropriate permissions. If it is a file, return the appropriate
permissions as well as the actual size. This size must be
accurate since it is used to determine EOF and thus read may
not be called.

UNIX
Equivalent:

man -s 2 stat

Return
values:

0 on success, with a correctly set structure
-ENOENT if the file is not found

cs1550_mkdir Description: This function should add the new directory to the root level,

and should update the .disk file appropriately.

UNIX
Equivalent:

man -s 2 mkdir

Return
values:

0 on success
-ENAMETOOLONG if the name is beyond 8 chars
-EPERM if the directory is not under the root dir only
-EEXIST if the directory already exists

cs1550_readdir

Description: This function should look up the input path, ensuring that it
is a directory, and then list the contents.

To list the contents, you need to use
the filler() function. For example: filler(buf, ".",
NULL, 0); adds the current directory to the listing generated
by ls -a

In general, you will only need to change the second
parameter to be the name of the file or directory you want to
add to the listing.

UNIX
Equivalent:

man -s 2 readdir

However it’s not exactly equivalent

Return
values:

0 on success
-ENOENT if the directory is not valid or found

cs1550_rmdir This function should not be modified.

CS/COE 1550 – Introduction to Operating Systems

 9

cs1550_mknod Description: This function should add a new file to a subdirectory, and
should update the .disk file appropriately with the modified
directory entry structure.

UNIX
Equivalent:

man -s 2 mknod

Return
values:

0 on success
-ENAMETOOLONG if the name is beyond 8.3 chars
-EPERM if the file is trying to be created in the root dir
-EEXIST if the file already exists

cs1550_write Description: This function should write the data in buf into the file

denoted by path, starting at offset.

UNIX
Equivalent:

man -s 2 write

Return
values:

size on success
-EFBIG if the offset is beyond the file size (but handle
appends)

cs1550_read Description: This function should read the data in the file denoted

by path into buf, starting at offset.

UNIX
Equivalent:

man -s 2 read

Return
values:

size read on success
-EISDIR if the path is a directory

cs1550_unlink This function should not be modified.

cs1550_truncate This function should not be modified.

cs1550_open This function should not be modified, as you get the full path every time any of
the other functions are called.

cs1550_flush This function should not be modified.
cs1550_init This function includes code that is run when the file system loads (e.g., opening

the .disk file, initializing a new .disk file)
cs1550_destory This function includes code that is run when the file system is stopped

gracefully (e.g., closing the .disk file)

Building and Testing

The cs1550.c file is included as part of the Makefile in the examples directory, so building your
changes is as simple as typing make.

CS/COE 1550 – Introduction to Operating Systems

 10

One suggestion for testing is to launch a FUSE application with the -d option (./cs1550 -d
testmount). This will keep the program in the foreground, and it will print out every message that the
application receives, and interpret the return values that you’re getting back. Just open a second
terminal window and try your testing procedures. Note if you do a CTRL+C in this window, you may not
need to unmount the file system, but on crashes (transport errors) you definitely need to.

Your first steps will involve simply testing with ls and mkdir. When that works, try using echo and
redirection to write to a file. cat will read from a file, and you will eventually even be able to
launch nano on a file.

Remember that you may want to delete your.disk file if it becomes corrupted. You can use the
commands od -x to see the contents in hex of a file, or the command strings to grab human readable
text out of a binary file.

Notes and Hints

• The root directory is equivalent to your mount point. The FUSE application does not see the
directory tree outside of this position. All paths are translated automatically for you.

• sscanf(path, "/%[^/]/%[^.].%s", directory, filename, extension); or you can
use strtok()

• Your application is part of userspace, and as such you are free to use whatever C Standard
Libraries you wish, including the file handling ones.

• Remember to always close your disk file after you open it in a function. Since the program
doesn’t terminate until you unmount the file system, if you’ve opened a file for writing and not
closed it, no other function can open that file simultaneously.

• Remember to open your files for binary access.

• Without the -d option, FUSE will be launched without knowledge of the directory you started it
in, and thus won’t be able to find your .disk file, if it is referenced via a relative path. This is okay,
we will grade with the -d option enabled.

• You can run gdb gdb .libs/lt-cs1550 given that you inside the examples folder. You can then run
the program (gdb) r -d testmount

File Backups

One of the major contributions the university provides for the AFS filesystem is nightly backups.
However, the /u/OSLab/ partition on thoth is not part of AFS space. Thus, any files you modify under
your personal directory in /u/OSLab/ are not backed up. If there is a catastrophic disk failure, all of your
work will be irrecoverably lost. As such, it is my recommendation that you:

CS/COE 1550 – Introduction to Operating Systems

 11

Backup all the files you change under /u/OSLab or QEMU to your ~/private/ directory
frequently!

BE FOREWARNED: Loss of work not backed up is not grounds for an extension.

Requirements and Submission

You need to submit:

• Your well-commented cs1550.c program’s source

Upload the file into Gradescope by the deadline.

Grading Sheet/Rubric

The test cases on Gradescope reflect the above rubrics. Please note that the score that you get from the
autograder is not your final score. We still do manual grading. We may discover bugs and mistakes that
were not caught by the test scripts and take penalty points off. Please use the autograder only as a tool
to get immediate feedback and discover bugs in your program. Please note that certain bugs (e.g.,
deadlocks) in your program may or may not manifest when the test cases are run on your program. It
may be the case that the same exact code fails in some tests then the same code passes the same tests
when resubmitted. The fact that a test once fails should make you try to debug the issue not to resubmit
and hope that the situation that caused the bug won't happen the next time around.

Item Grade
cs1550_getattr 15%
cs1550_mkdir 15%
cs1550_readdir 15%
cs1550_mknod 15%
cs1550_write 15%
cs1550_read 15%
File System works correctly 10%

