

CS/COE 1550 – Introduction to Operating Systems

 1

Project 2: Process Synchronization

Due: Tuesday, March 3, 2020 @11:59pm
Late: Thursday, March 5, 2020 @11:59pm with 10% reduction per late day

Table of Contents

PROJECT OVERVIEW .. 2

PROJECT DETAILS ... 2

VISITORARRIVES() AND TOURGUIDEARRIVES() ... 2
TOURMUSEUM() AND OPENMUSEUM() .. 3
VISITORLEAVES() AND TOURGUIDELEAVES() .. 3
VISITOR ARRIVAL PROCESS... 4
TOUR GUIDE ARRIVAL PROCESS .. 4
REQUIREMENTS ... 4
TESTING ... 4
PROGRAM AND OUTPUT SPECS .. 4
SHARED MEMORY IN OUR SIMULATION .. 6
BUILDING AND RUNNING MUSEUMSIM .. 6
DEBUGGING ... 6

SUBMISSION .. 7

GRADING SHEET/RUBRICS ... 7

CS/COE 1550 – Introduction to Operating Systems

 2

Project Overview

Anytime we share data between two or more processes or threads, we run the risk of having race
conditions and deadlocks. In race conditions, the shared data could become corrupted. In order to avoid
these situations, we have discussed various mechanisms to ensure that one process's critical regions are
guarded from another’s.

One place that we might use parallelism is to simulate real-world situations that involve multiple
independently acting entities, such as people. In this project, you will use the semaphore
implementation that you finished in Project 11 to model the safe museum tour problem, whereby
visitors and museum tour guides synchronize so that:

• a visitor cannot tour a museum without a tour guide,

• a tour guide cannot open the museum without a visitor,

• a tour guide leaves when no more visitors are in the museum,

• a tour guide cannot leave until all visitors in the museum leave,

• at most two tour guides can be in the museum at a time, and

• each tour guide provides a tour for at most ten visitors.

Your job is to write a program that (a) always satisfies the above constraints and (b) under no conditions
will cause a deadlock to occur. A deadlock happens, for example, when the museum is empty, a tour
guide and a visitor arrive, and they stay waiting outside the museum forever.

Project Details

You are to write (a) the visitor process, (b) the tour guide process, and (c) six functions called by these
processes: (c1) visitorArrives(), (c2) tourMuseum(), (c3) visitorLeaves(), (c4)
tourguideArrives(), (c5) openMuseum(), and (c6) tourguideLeaves(). You will also write two
processes, (d) one for simulating tour guides' arrival and (e) the other for simulating visitors' arrival.

visitorArrives() and tourguideArrives()

In order to open a museum for tours, there need to be at least one tour guide and one visitor.
visitorArrives() is called by visitor processes and tourguideArrives() is called by tour guide
processes. Both functions must block until a tour guide and a visitor both arrive.

An arriving visitor must wait if

• the museum is closed or

1 If you haven’t finished Project 1 or are not sure if your solution is correct, please download and use the modified
kernel from CourseWeb.

CS/COE 1550 – Introduction to Operating Systems

 3

• the maximum number of visitors has been reached

An arriving tour guide must wait if

• the museum is closed, and no visitor is waiting outside or

• the museum is open, and two tour guides are inside the museum.

While only one tour guide is inside the museum,

• up to ten visitors may arrive (i.e., call visitorArrives()) and

• a second tour guide may open the museum (i.e., call openMuseum()).

When a tour guide arrives, the following message is printed to the screen:

Tour guide %d arrives at time %d.

When a visitor arrives, the following message is printed to the screen:

Visitor %d arrives at time %d.

tourMuseum() and openMuseum()

After tourguideArrives() returns, the tour guide immediately calls openMuseum(). After
visitorArrives() returns, the visitor immediately calls tourMuseum(). Each visitor takes 2 seconds
to tour the museum (you can implement that by calling nanosleep or sleep). A visitor inside
tourMuseum() must not block another visitor who is also inside tourMuseum().

When a tour guide opens the museum, the following message is printed to the screen:

Tour guide %d opens the museum for tours at time %d.

When a visitor tours the museum, the following message is printed to the screen:

Visitor %d tours the museum at time %d.

visitorLeaves() and tourguideLeaves()

Tour guides that are inside the museum cannot leave until all visitors inside the museum leave.

When a tour guide leaves, the following message should be printed to the screen:

Tour guide %d leaves the museum at time %d

When a visitor leaves, the following message should be printed to the screen:

Visitor %d leaves the museum at time %d

CS/COE 1550 – Introduction to Operating Systems

 4

Visitor Arrival Process

The visitor arrival process creates m visitor processes. The number of visitors, m, is read from a
command-line argument (e.g., ./museumsim -m 10). Visitors arrive in bursts. When a visitor arrives,
there is a pv (e.g., 70%) chance that another visitor is immediately arriving after her, but once no visitors
arrive, there is a dv seconds (e.g., 20 seconds) delay before any new visitor arrives. The first visitor
always arrives at time 0. The probability pv and the delay dv are to be read from the command-line (e.g.,
./museumsim -pv 70 -dv 20).

Tour guide Arrival Process

The tour guide arrival process creates k tour guide processes. The number of tour guides, k, is read from
a command-line argument (e.g., ./museumsim -k 10). Tour guides arrive in bursts. When a tour guide
arrives, there is a pg (e.g., 30%) chance that another tour guide is immediately arriving after2 her, but
once no tour guides arrive, there is a dg second (e.g., 30 seconds) delay before any new tour guide
arrives. The first tour guide always arrives at time 0. The probability pa and the delay da are to be read
from the command-line (e.g., ./museumsim -pa 30 -da 30).

Requirements

Your solution must use semaphores, should not use busy waiting, and should be deadlock-free.

Testing

Make sure to run various test cases against your solution; for instance, create k tour guides and m
visitors (with various values of k and m, for example k > m, m > k, k == m), different values for the
probabilities and delays, etc. Note that the exact order of the output messages can vary, within certain
boundaries. These boundaries are checked by the autograder scripts.

Program and Output Specs

Create a program, museumsim, which runs the simulation. Your program should run as follows.

• Fork a process for visitor arrival and a process for tour guide arrival, each in turn forking visitor
processes and tour guide processes, respectively, at the appropriate times as specified by the
command-line arguments.

• To get an 80% chance of something, you can generate a random number modulo 100 and see if
its value is less than 80. It’s like flipping an unfair coin. You may refer to CS 449 materials for
how to generate a random number.

2 Recall that at most two tour guides can be in the museum at a time.

CS/COE 1550 – Introduction to Operating Systems

 5

• Have the following command-line arguments:

• -m: number of visitors

• -k: number of tour guides

• -pv: probability of a visitor immediately following another visitor

• -dv: delay in seconds when a visitor does not immediately follow another visitor

• -sv: random seed for the visitor arrival process

• -pg: probability of a tour guide immediately following another tour guide

• -dg: delay in seconds when a tour guide does not immediately follow another tour guide

• -sg: random seed for the tour guide arrival process

• Make sure that your output shows all the necessary events. You should sequentially number
each visitor and tour guide starting from 0. Visitor numbers are independent of tour guide
numbers. When the museum is empty, your program should display:

The museum is now empty.

• Print out messages in the form:

The museum is now empty.

Tour guide %d arrives at time %d.

Visitor %d arrives at time %d.

Tour guide %d opens the museum for tours at time %d.

Visitor %d tours the museum at time %d.

Visitor %d leaves the museum at time %d.

Tour guide %d leaves the museum at time %d.

• The printed time is in seconds since the start of the program. You should use the function
gettimeofday and use both the seconds and microseconds fields in struct timeval in your
calculation of the number of elapsed seconds.

CS/COE 1550 – Introduction to Operating Systems

 6

Shared Memory in our simulation

To make our shared data and our semaphores, what we need is for multiple processes to be able to
share the same memory region. We can ask for N bytes of RAM from the OS directly by using mmap():

void *ptr = mmap(NULL, N, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, 0, 0);

The return value will be the address of the start of the allocated memory. We can then steal portions of
the allocated memory to hold our variables much like the malloc() project from CS 0449. For example, if
we wanted two integers to be stored in the allocated region, we could do the following to allocate and
initialize them.

int *first_sem;
int *second_sem;
first = (int *) ptr;
second_sem = first_sem + 1;
*first_sem = 0;
*second_sem = 0;

At this point we have one process and some RAM that contains our variables. But we now need to share
that memory region/variables with other processes. The good news is that a mmap’ed region (with the
MAP_SHARED flag) remains accessible in the child process after a fork(). Therefore, do the mmap() in
main before fork() and then use the variables in the appropriate way afterwards.

Building and Running museumsim

Please use the instructions in Project 1 for building and running the test program (named trafficsim in
Project 1) to build and run museumsim. Make sure that the QEMU VM is running the modified kernel
(with the down and up syscalls). Whenever you make a change to museumsim.c, you only to scp it into
QEMU but you don't need to reboot QEMU.

Debugging

Please use the following steps to run gdb inside the QEMU virtual machine:

Inside the QEMU VM:

scp PITT_ID@thoth.cs.pitt.edu:/u/OSLab/original/gdb/* .

mv gdb /bin/

mv libncurses.so.5 /lib

mv libtinfo.so.5 /lib

gdb <program name>

On thoth:

CS/COE 1550 – Introduction to Operating Systems

 7

You will have to add the -g flag to the compilation command (typed on thoth) for the museumsim
program.

To run valgrind inside the QEMU VM:

On QEMU:

scp -r PITT_ID@thoth.cs.pitt.edu:/u/OSLab/original/valgrind/* .

mv bin/* /bin/

mv lib/* /lib/

echo export VALGRIND_LIB=/lib/valgrind >> ~/.bashrc

bash

valgrind ./<program name with command-line arguments>

Submission

You need to submit the following to Gradescope by the deadline:

• Your well-commented museumsim.c program’s source,

• the file sem.h from Project 1 or from the provided kernel, and

• a brief, intuitive explanation of why (or why not) your solution is fair (maximum 10 visitors per

tour guide), as well as deadlock- and starvation-free.

Grading Sheet/Rubrics

Please note that the score that you get from the autograder is not your final score. We still do manual grading. We may
discover bugs and mistakes that were not caught by the test scripts and take penalty points off. Please use the
autograder only as a tool to get immediate feedback and discover bugs in your program. Please note that certain bugs
(e..g, deadlocks) in your program may or may not manifest when the test cases are run on your program. It may be the
case that the same exact code fails in some tests then the same code passes the same tests when resubmitted. The
fact that a test once fails should make you try to debug the issue not to resubmit and hope that the situation that
caused the bug won't happen the next time around.

Item Grade
Test cases on the autograder 80%
Comments and style 10%
Explanation report 10%

