
CS/COE 1550 LAB 5

BIGGER FILES FOR XV61

In this lab you'll increase the maximum size of an xv6 file. Currently xv6 files

are limited to 140 sectors (512 bytes each), or 71,680 bytes. This limit comes

from the fact that an xv6 inode contains 12 "direct" block numbers and one

"singly-indirect" block number, which refers to a block that holds up to 128

more block numbers, for a total of 12+128=140. You'll change the xv6 file

system code to support a "doubly-indirect" block in each inode, containing 128

addresses of singly-indirect blocks, each of which can contain up to 128

addresses of data blocks. The result will be that a file will be able to consist of

up to 16523 sectors (or about 8.5 megabytes).

1. PRELIMINARIES

Modify your Makefile's CPUS definition so that it reads:

CPUS := 1

Add

QEMUEXTRA = -snapshot

right before QEMUOPTS

The above two steps speed up qemu tremendously when xv6 creates large files.

mkfs initializes the file system to have fewer than 1000 free data blocks, too

few to show off the changes you'll make. Modify param.h to set FSSIZE to:

 #define FSSIZE 20000 // size of file system in blocks

Copy the file big.c (on CourseWeb) into your xv6 directory, add it to the

UPROGS list, start up xv6, and run big. It creates as big a file as xv6 will let it

and reports the resulting size. It should say 140 sectors.

1 Based on https://pdos.csail.mit.edu/6.828/2017/homework/xv6-big-files.html

2

2. WHAT TO LOOK AT

The format of an on-disk inode is defined by struct dinode in fs.h. You're

particularly interested in NDIRECT, NINDIRECT, MAXFILE, and the addrs[] element

of struct dinode. Below is a diagram of the standard xv6 inode.

The code that finds a file's data on disk is in bmap() in fs.c. Have a look at it

and make sure you understand what it's doing. bmap() is called both when

reading and writing a file. When writing, bmap() allocates new blocks as needed

to hold file content, as well as allocating an indirect block if needed to hold

block addresses.

bmap() deals with two kinds of block numbers. The bn argument is a "logical

block" -- a block number relative to the start of the file. The block numbers

in ip->addrs[], and the argument to bread(), are disk block numbers. You can

view bmap() as mapping a file's logical block numbers into disk block numbers.

3. YOUR JOB

Modify bmap() so that it implements a doubly-indirect block, in addition to

direct blocks and a singly-indirect block. You'll have to have only 11 direct

blocks, rather than 12, to make room for your new doubly-indirect block;

you're not allowed to change the size of an on-disk inode. The first 11 elements

of ip->addrs[] should be direct blocks; the 12th should be a singly-indirect

3

block (just like the current one); the 13th should be your new doubly-indirect

block.

You don't have to modify xv6 to handle deletion of files with doubly-indirect

blocks.

If all goes well, big will now report that it can write 16523 sectors. It will

take big a few dozen seconds to finish.

4. HINTS

Make sure you understand bmap(). Write out a diagram of the relationships

between ip->addrs[], the indirect block, the doubly-indirect block and the

singly-indirect blocks it points to, and data blocks. Make sure you understand

why adding a doubly-indirect block increases the maximum file size by 16,384

blocks (really 16383, since you have to decrease the number of direct blocks by

one).

Think about how you'll index the doubly-indirect block, and the indirect blocks

it points to, with the logical block number.

If you change the definition of NDIRECT, you'll probably have to change the size

of addrs[] in struct inode in file.h. Make sure that struct inode and struct

dinode have the same number of elements in their addrs[] arrays.

If you change the definition of NDIRECT, make sure to create a new fs.img,

since mkfs uses NDIRECT too to build the initial file systems. If you

delete fs.img, make on Unix (not xv6) will build a new one for you.

If your file system gets into a bad state, perhaps by crashing, delete fs.img (do

this from Unix, not xv6). make will build a new clean file system image for you.

Don't forget to brelse() each block that you bread(). brelse() releases the

buffer cache for the block (check bio.c).

You should allocate indirect blocks and doubly-indirect blocks only as needed,

like the original bmap().

5. SUBMISSION INSTRUCTIONS

Submit to GradeScope the files that you have modified within the source code of xv6. You

should modify the following files only:

4

• file.h

• fs.h

• param.h

• fs.c

	1. Preliminaries
	2. What to Look At
	3. Your Job
	4. Hints
	5. Submission Instructions

