USING THE TIO PACKAGE
CS7: Introduction to Programming - Java

It is easy to display output using System.out.println(). It isn’t quite as easy to do input, however. For CS7, we are going to take advantage of a package provided by the authors of JBD called tio. Recall that a package is just a collection of previously written program parts that are available for use (p. 6, JBD). There are many packages automatically available that come with java, but none that make user input easy to do. This is why we are using tio (it will also allow you to run the code examples in the book).
We won’t describe the full functionality of the package here, but simply describe how to set it up. The full code is given in Appendix C, but your best bet in learning it is to just pick up bits and pieces as you see more and more examples of its use. It is important to remember, however, that this is not standard Java stuff – we’re just using code written by Pohl & McDowell.
Obtaining the TIO files
The first thing you need to do is logon to unixs and copy the package file over. The entire package comes in a jar file, which is a bunch of files all crammed into one (like a zip file).
(1) unixs1 $ cd private/java
(2) unixs1 $ ls -l

total 4

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

(3) unixs1 $ cp ~hclane/public/tio.jar .
(4) unixs1 $ ls -l
total 18

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

-rw-r--r-- 1 yourid OAKLAND 6504 Aug 24 14:13 tio.jar

(5) unixs1 $
Don’t miss the period at the end of (3). This copies the file tio.jar into the current directory (i.e., your java directory).
Now that you have the file, you will use the java jar command to expand it.
(5) unixs1 $ jar xvf tio.jar
 created: META-INF/

 inflated: META-INF/MANIFEST.MF

 created: tio/

extracted: tio/Console.java

extracted: tio/FormattedWriter.java

extracted: tio/PrintFileWriter.java

extracted: tio/ReadException.java

extracted: tio/ReadInput.java

(6) unixs1 $ ls -l
total 26

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:00 META-INF

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:00 tio

-rw-r--r-- 1 yourid OAKLAND 6504 Aug 24 14:13 tio.jar

(7) unixs1 $
Two new directories have been created (note the “d” in the first position of the new directory entries). You can safely ignore META-INF directory, but take note of the files created in the expansion of tio.jar and placed in the tio directory. These five files constitute the tio package and provide the methods you’ll be using to do user input in your programs.
Using the TIO package
All programs that use tio will need to have the tio folder in the same directory (there are other ways to set this up, but this is the most direct). For this class, we’ll just do our work in the private/java directory until it becomes too unwieldy. To test the package, start up pico (or any text editor), enter the program on p. 27 of JBD, and save it to a file named SimpleInput.java.
(8) unixs1 $ pico SimpleInput.java
 (type in the program on p. 27 of the book, save & exit)
(9) unixs1 $ ls -l
total 28

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:00 META-INF

-rw-r--r-- 1 yourid OAKLAND 462 Aug 25 10:15 SimpleInput.java

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:04 tio

-rw-r--r-- 1 yourid OAKLAND 6339 Aug 25 10:05 tio.jar

(10) unixs1 $
After that, compile and run the program. If you made syntax errors, the compiler will complain and you’ll have to edit and recompile.

(21) unixs1 $ javac SimpleInput.java
(22) unixs1 $ ls -l
total 30

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:00 META-INF

-rw-r--r-- 1 yourid OAKLAND 668 Aug 25 10:18 SimpleInput.class

-rw-r--r-- 1 yourid OAKLAND 462 Aug 25 10:15 SimpleInput.java

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 25 10:18 tio

-rw-r--r-- 1 yourid OAKLAND 6339 Aug 25 10:05 tio.jar

(23) unixs1 $ java SimpleInput
type two integers for the width and height of a box

12 15

The area is 180

(24) unixs1 $

Notice the new file SimpleInput.class. This byte code file refers to the programs in the tio package by calling Console.in.readInt(). If you remove the import tio.*; line from the program, the compiler would not understand the call to readInt(). If you don’t understand this, please ask!
One final note: you may have noticed that the call to javac (line 21) probably took a tad longer this time than it usually does. This is because javac had to compile the tio package (refer above to see that when unpacked, it only contained java source files). If we look at the contents of the tio directory, there will now be a class file for each java file. FYI – javac is smart enough to not recompile again (unless you change the java source files in the package – please don’t).
(24) unixs1 $ ls -l tio
total 64

-rw-r--r-- 1 yourid OAKLAND 640 Aug 25 10:18 Console.class

-rw-r--r-- 1 yourid OAKLAND 620 Aug 25 10:05 Console.java

-rw-r--r-- 1 yourid OAKLAND 4184 Aug 25 10:18 FormattedWriter.class

-rw-r--r-- 1 yourid OAKLAND 7412 Aug 25 10:05 FormattedWriter.java

-rw-r--r-- 1 yourid OAKLAND 544 Aug 25 10:05 PrintFileWriter.java

-rw-r--r-- 1 yourid OAKLAND 300 Aug 25 10:18 ReadException.class

-rw-r--r-- 1 yourid OAKLAND 829 Aug 25 10:05 ReadException.java

-rw-r--r-- 1 yourid OAKLAND 3594 Aug 25 10:18 ReadInput.class

-rw-r--r-- 1 yourid OAKLAND 9441 Aug 25 10:05 ReadInput.java

(25) unixs1 $

There you have it. From now on, programs you write in the private/java directory can use tio by including the line

import tio.*; at the top of the source file. You won’t need to go through this process again unless you decide to use a different directory in the future.
