TURNING PROGRAMS IN ELECTRONICALLY

CS7: Introduction to Programming - Java

In CS7, you will be turning in your programs electronically. This process looks a little strange at first, but is actually not very involved. Just follow these steps and you will be able to turn your programs in and verify that it worked. You may need to review the Edit, Run, and Compile handout if you don’t remember some of the commands here.
Naming your files and classes

Java requires that the file name and class name (in the .java file) be the same. Now, since everyone will be turning in their files electronically, we can’t have 50 files that all use the same name. Thus, you will need to adopt the following convention: preface the name of your class and your file name with your CIS user id. (the one you logon with)

For example, if your user name is yourid, the SayHello class would look like this in a file named youridSayHello.java
// First program in CS7 – Your Name

public class youridSayHello {
 public static void main(String[] args) {
 System.out.println("What is up?");
 } // end main() method
} // end of class
If you forget to do this, it’s very easy to fix. Just edit your source file, change the class name appropriately, then go back to the unix prompt and use mv to rename the file. (e.g., mv SayHello.java youridSayHello.java) You will now need to run the java compiler again to get a new class file (which will named youridSayHello.class).
Turning in your program VERIFYING that you were successful
Let’s pretend you need to turn in the SayHello program. Here’s a synopsis of where you would be just before turning it in (remember, cd by itself takes you to your home directory):
(48) unixs1 $ cd
(49) unixs1 $ cd private/java
(50) unixs1 $ pwd
/afs/pitt.edu/usr69/yourid/private/java
(51) unixs1 $ ls -l
total 4

-rw-r--r-- 1 yourid OAKLAND 433 Aug 23 21:32 youridSayHello.class

-rw-r--r-- 1 yourid OAKLAND 197 Aug 23 21:32 youridSayHello.java

(52) unixs1 $
To turn the assignment in, we will copy these two files into the handin directory which is an area that you can only copy files to. After you copy something into the handin directory, you do not have access to that copy again, so make sure you’re happy with your program before you do this step!
A few more unix notes that you need to know:

· * is called a “wildcard” and is used to match multiple files during a copy or listing.

· we dropped the –l from the listing here to keep the results less messy.

· make sure you substitute the correct handin directory (e.g., “proj1”) for sample.

(52) unixs1 $ cp youridSayHello.* /afs/cs.pitt.edu/public/incoming/CS7-Lane/sample/
(53) unixs1 $ ls /afs/cs.pitt.edu/public/incoming/CS7-Lane/sample/youridSayHello.*

/afs/cs.pitt.edu/public/incoming/CS7-Lane/sample/youridSayHello.java
/afs/cs.pitt.edu/public/incoming/CS7-Lane/sample/youridSayHello.class
(54) unixs1 $

A description of each line:

· (52) This line says to copy all files (in the current directory) that begin with “youridSayHello” to the handin directory (the long part that starts with /afs/cs.pitt.edu/…)

· (53) This verifies that you turned the assignment in. You are allowed to list the contents of the handin directory, but you can’t open, read, rename, or execute any files there.
If you turn a file in and decide it isn’t the one you wanted, just do it again, but rename everything with a 2 after the file name (e.g., youridSayHello2.java and youridSayHello2.class). You will need to recompile before copying it over. The TA will look for these situations, but it is safest to drop a quick email to be sure.
