EDITING, COMPILING, AND EXECUTING A PROGRAM

CS7: Introduction to Programming - Java
The details of creating a computer program vary from platform to platform (e.g., it is different on a Mac than it is Unix), but the ideas are the same for all. Here is a high-level view of the process, with details for us included below the steps.

1. Understand the problem you are solving and design a program to solve it.

2. Create the source code file with an editor.

a. we are using the platform Unix
b. our source code will be written in the language Java
c. our editor is pico, a simple editor for use in Unix.

3. Compile the source code with a compiler creating an executable file.

a. our compiler is javac (which stands for “Java Compiler”)
b. the output file has the same first name, but with a .class extension (example below)

4. Execute the resulting file and observe the results.

5. Re-edit your source file, repeat steps 3-4 as necessary (this is called debugging)
The following is a sample session with Unix demonstrating these concepts. You can use it to guide your efforts as you write programs. It begins at step 2 in the list above because step 1 is done on paper and in your head.
Create Source Code

The first thing we need to do is set up a work area for the program. If you use your root directory for everything, it will not take long to become overwhelmed. We do this by creating directories that we can “work in”.

· cd changes directories (allows you to “move” into and out of directories)

· mkdir creates directories

· pwd will print your current working directory (the one you are “in”)

(1) unixs1 $ cd private
(2) unixs1 $ mkdir java
(3) unixs1 $ cd java
(4) unixs1 $ mkdir sample
(5) unixs1 $ cd sample
(6) unixs1 $ pwd
/afs/pitt.edu/usr69/yourid/private/java
(7) unixs1 $

You always should work in your private directory (no one else can view it). Also, yourid should match your Pitt user id that you used to log into unixs (the “usr” # directory may be different too). Finally, it is only necessary to create a directory one time, so you will not need to create a java directory again in the future.

Now we start up the editor and create our source code (which will be saved in our working directory), then use the following commands to confirm the file is there and its contents.

· ls will list all files in the directory. the –l flag does a “long” listing.

· cat will display the contents of a file to the screen.

(7) unixs1 $ pico SayHello.java
 (pico starts up, you type the program in (the stuff highlighted below), save it, then exit back to the prompt)

(8) unixs1 $ ls -l
total 1

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java
(9) unixs1 $ cat SayHello.java
// First program in CS7 – Your Name

public class SayHello {
 public static void main(String[] args) {
 System.out.println("What is up?");
 } // end main() method
} // end of class
(10) unixs1 $
You don’t really need to worry about what everything means just yet (although the book gives a nice idea).
Compile the source code
Now that the source code is written we need to compile it. This will produce the byte code file that can be run by the java virtual machine. There is a chance you will have syntax errors at this point, and the compiler will tell you about them. In that case, you have to start pico up again and fix the errors before compiling again.

(10) unixs1 $ javac SayHello.java
(11) unixs1 $ ls -l
total 4
-rw-r--r-- 1 yourid OAKLAND 421 Aug 23 20:31 SayHello.class

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java
(12) unixs1 $

You now have 2 files in this directory, the original (text) program and now the byte code version that can be executed.
Running the executable file

Once you have an executable, you now need to start the java virtual machine (another program) and tell it which class to run. This is done in one easy step:
(12) unixs1 $ java SayHello
What is up?
(13) unixs1 $

Compare the output to the source code shown above. This output comes from the System.out.println(…) line right in the middle of the program. Whatever was in between the double quotes would have been displayed. In more complicated programs, you will often find the output is not what you want, thus it is often necessary repeat the editing/compiling cycle.

Other useful things to know
You will quickly become accustomed to using commands like cd, ls, pwd, etc. Here are a few more commands and tricks that will make your life easier. These are demonstrated below.

· cp – copy command. You can create a duplicate of a file this way. Useful for backing up your programs.

· mv – move a file, also allows you rename a file.

· rm – remove a file (be very careful, it is very difficult, sometimes impossible to recover a deleted file in unix)

· ~ - (a tilda, upper left hand corner of the keyboard) this stands for your home directory.

· . – (just a period) this stands for the current directory

· .. – (two periods) this stand for the parent directory

And some tips:

· The up and down arrow keys will allow you to cycle through old commands. This can really save some typing in the long run.

· If you hit the tab key after typing a few letters of a file’s name in, unix will try to complete it for you. You can even do this with directory names. If it can’t match exactly, just type in another few letters and try again.

· cd all by itself will return you to your home directory. (as would cd ~)
(13) unixs1 $ pwd
/afs/pitt.edu/usr69/yourid/private/java
(14) unixs1 $ ls -l
total 4

-rw-r--r-- 1 yourid OAKLAND 421 Aug 23 20:31 SayHello.class

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java

(15) unixs1 $ cp SayHello.java SayHello.java.backup
(16) unixs1 $ ls -l
total 6

-rw-r--r-- 1 yourid OAKLAND 421 Aug 23 20:31 SayHello.class

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:48 SayHello.java.backup

(17) unixs1 $ mv SayHello.java.backup SayHello.java2
(18) unixs1 $ ls -l
total 6

-rw-r--r-- 1 yourid OAKLAND 421 Aug 23 20:31 SayHello.class

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:48 SayHello.java2

(19) unixs1 $ mv SayHello.java2 ..
(20) unixs1 $ ls -l

total 4

-rw-r--r-- 1 yourid OAKLAND 421 Aug 23 20:31 SayHello.class

-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:26 SayHello.java

(21) unixs1 $ cd ..
(22) unixs1 $ ls -l
total 4
-rw-r--r-- 1 yourid OAKLAND 191 Aug 23 20:48 SayHello.java2

drwxr-xr-x 2 yourid OAKLAND 2048 Aug 23 20:48 java
(23) unixs1 $ rm SayHello.java2
(24) unixs1 $ ls -l
total 3
drwxr-xr-x 2 yourid OAKLAND 2048 Aug 23 20:48 java
(25) unixs1 $ pwd
/afs/pitt.edu/usr69/yourid/private
(26) unixs1 $ cd
(27) unixs1 $ pwd
/afs/pitt.edu/usr69/yourid
(28) unixs1 $
Explanations:

· (13) – pwd prints the current directory

· (14) – ls -l prints the contents of the current directory

· (15) – copy SayHello.java to a new file SayHello.java.backup
· (16) – confirm that two versions now exist (note that both have a size of 191 bytes)

· (17) – this is how you rename a file, you “move” it to the same directory, but change the name in the process

· (18) – this confirms the name change

· (19) – now we really move the file to the parent (“..”) directory.

· (20) – this confirms the file is no longer in the java directory

· (21) – we change to the parent directory

· (22) – and list again to see the file is now there (next to our java directory, the one we just came up from)

· (23) – this deletes the file (remember to be very careful when you use rm)

· (24) – this confirms that the file is gone

· (25) – show current directory

· (26) – cd all by itself takes you to the home directory (incidentally, this would be the same as cd ~)

· (27) – show current directory
