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Abstract—The TDR system is an experimental multi-level 
slow intelligence system for personal health care. The TDR 
system can be used by a single user or a group of users who 
will interact to understand, maintain and improve each other’s 
state of health. In this paper, we simulate social networks by 
applying the Abstract Machine model.  Two social network 
models are described: the Circulated Model and the Teacher 
Student Model. We have incorporated the Teacher Student 
Model into the Chi super-component of the TDR system and 
obtained positive experimental results. 
 
Keywords— Personal health care system, slow intelligence 
system, social network, abstract machine model. 

 

1. Introduction  
 
An experimental multi-level slow intelligence system for 
personal health care, called the TDR system, was developed as 
a test bed for exploring and integrating different applications 
in personal health care, emergency management and social 
networking [1].  The TDR system mainly consists of three 
super-components: Tian, Di and Ren. According to the 
Chinese philosophy these three super-components are the 
essential ingredients of a human-centric psycho-physical 
system. They can be thought of as human beings (Ren) 
interacting with the environment consisting of heaven (Tian) 
and earth (Di).  For personal health care, there is a fourth 
higher level super-component called Chi (or Qi), which in this 
context represents the state of health of a person (or persons). 
 
Decision making in TDR system is through multiple 
computation cycles involving the super-components to 
increase the chances of survival and well being of human 
beings (or groups). Any action based on only one aspect of the 
environment without considering the other aspects could 
reduce the chances of survival, thus iterative, multiple 
computation cycles are crucial for the TDR system.  
 
The TDR system can be used by a single user, or a group of 
users who will interact to understand, maintain and improve 
each other’s state of health.  In this paper, we investigate the 
social network models for the TDR system.  
 
The paper is organized as follows. Section 2 presents the GUI 
interface of the TDR system so that the reader can understand 
how the TDR system works in practice.  In Section 3 an 
Abstract Machine model for the computation cycles is 

presented. In Sections 4 and 5 we show how and what part of 
the Abstract Machine model is extended to incorporate the 
social network model into interaction models.  Based upon this 
approach, we describe two social network models: The 
Circulated Model (Section 6) and the Teacher Student Model 
(Section 7). We have incorporated the Teacher Student Model 
into Chi component in the TDR system and obtained positive 
experimental results (Section 8).  In Section 9 we discuss the 
implications and further research. 
 
 
2.  The Web GUI of the TDR System 
 
In this section, we describe the Web GUI of the TDR system 
so that the reader can understand how the system works in 
practice. 
 
The dashboard is the main GUI interface of the TDR system. 
As illustrated by Figure 1 it provides a high-level overview of 
the data in the system. On the left side, it has a menu panel 
that contains all the actions the user can perform, including 
activating and deactivating super-components. For the admin 
user, this menu will also include addition, deletion and 
modification of regular users. 

 
Figure 1. The dashboard for Web GUI of TDR system. 

 
Figure 2. The Carousel. 
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There is a carousel that displays all super-components in 
rotation, four at a time for the PC screen and only one for the 
smart phone screen. This vividly demonstrates the idea of 
computation cycles in the TDR system. A component’s banner 
is in tranquil state (blue or green color) until an alert is 
received and then it changes to elevated state (orange or red 
color). 
 
As shown in Figure 2, when the user clicks on the “View 
Details” button at the lower right part of the dashboard, a table 
will appear beneath the carousel panel to display all records 
that belong to the current user. For each entry, it contains the 
date and time of a record, the sensor type, the data type, the 
actual reading of the data, and the originator. This scheme 
allows flexibility and scalability, as in the future there might 
be more and more sensors added to the TDR system.  In 
Figure 2, the first record is the room temperature from the 
Earth (Di) super-component, and the other records  are the 
EKG recordings from the Human (Ren) super-component. 

 
Figure 3. Visualization of fatigue in time. 

 
If the user is communicating remotely with his/her doctor, a 
user might want to specify the record ID so that the doctor 
knows exactly what entry he/she is referring to. As shown in 
Figure 3, by clicking on the “Draw Graphs” button a graph 
showing the data-to-day changes of a selected  data item can 
also be displayed by the GUI for visualization by the user or 
the doctor. 
 
By clicking on the “Analyze Data” button at the lower right 
part of the dashboard, a user’s records will be analyzed to 
evaluate his/her state of health such as the total-Chi of a 
person.  Clicking on the “Find Similar” button will retrieve 
other user’s records similar to the current user’s record so that 
the user or the doctor can make a comparison to enhance 
his/her understanding.  The details on data analysis and 
similarity retrieval are explained in the Appendix. 
 
Interestingly, the user in a social group can use the same TDR 
GUI to retrieve other user’s records, analyze them to evaluate 
their state of health, etc. If a particular user is a teacher or a 
‘master’ with deep knowledge, this user can influence others 
to understand, maintain and improve one’s state of health.  

Therefore the TDR system can also be used by social groups 
for collective personal health care. 
 
 
3. The Abstract Machine Model for Computation 
Cycles  
 
A slow intelligence system SIS typically possesses at least two 
decision cycles [2]. The first one, the quick decision cycle, 
provides an instantaneous response to environmental changes. 
The second one, the slow decision cycle, tries to follow the 
gradual changes in the environment and analyze the 
information acquired from the environments or peers or past 
experiences. The slow/quick decision cycles enable the SIS to 
both cope with the environment and meet long-term goals. 
 
To model such decision cycles we introduce an Abstract 
Machine model of multiple computation cycles in Section 3.1, 
and then specify the computation cycles for the TDR system in 
Section 3.2.  In Section 3.3 we describe multi-level 
computation cycles and how to apply the abstract machine 
model to social networks. 

 
3.1. The Abstract Machine Model 
 
The Abstract Machine Model is specified by: (P, S, P0, 
Cycle1, ...,, Cyclen), where 

P is the non-empty problem set, 
S is the non-empty solution set, which is a subset of Po, 
P0 is the initial problem set, which is a subset of P, 
Cycle1, ...,, Cyclen  are the computatin cycles.  

 
Each computation cycle will start from an initial problem set 
and apply different operators such as +adapAij=,  -enum<, 
>elim-, =propAij + and >conc= successively to generate new 
problem sets from old problem sets until a non-empty solution 
set is found.  If a non-empty solution set is found, the cycle is 
completed and later the same computation cycle can be 
repeated.  If on the other hand no solution set is found, a 
different computation cycle is entered.  
 
As an example the problem set P consists of problem elements 
p1, p2, p3, ..., pn, and each problem element pj is specified by 
a vector consisting of attributes Aij.  A computation cycle x 
will attempt to find a solution set by first adapting based upon 
input from the environment: Px0 +adapAij=  Px1 that is to adapt 
based on attribute Aij, for example, by appending Aij to each 
element in Px0 to form Px1.   
 
Then it may try to find related problem elements: Px1 -enum< 
Px2 where Px2 = { y:  y is related to some x in Px1, e.g. d(x,y) 
< D}. Next it may try to eliminate the non-solution elements:  
Px2 >elim-   Px3 where Px3 = {x: x is in Px2 and x is in S}. 
 
Finally the solution elements (or alert messages if there are no 
solutions) may be propagated to peers: Px3 =propAij+ Px4  that 
is to export/propagate attribute Aij to peers. 
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Therefore this computation cycle can be specified succinctly 
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2  
>elim- Px3 =propAij+ Px4 
The above expression is a specification of the computation 
cycle, not a mathematical equation.  This expression should be 
read and interpreted from left to right. 
 
If Px4 is non-empty, the Abstract Machine will complete this 
cycle of computation and terminate at the end of Cyclex, and it 
may later resume at the beginning of Cyclex. Otherwise Px4 is 
empty and the Abstract Machine will jump to a different 
Cycley. This is specified by [guard x,y] where x is the current 
computation cycle if a solution set is found (Px4 is non-empty), 
and y is the computation cycle to enter if no solution set is 
found (Px4 is empty). Before an Abstract Machine completes 
its current computation cycle, it will propagate the solution set 
(or alert messages) to its peers. 
 
In the above, the elimination operator can be replaced by the 
concentration operator, whenever the solution set is not known 
apriori.  The concentration operator applies a predefined 
threshold to filter out problem elements below the threshold: 
Px1 >conc= Px2  where Px2 = {x:  x is in Px1 and  th(x) above 
a predefined threshold t}. 
 
3.2. Multiple Computation Cycles of TDR System 
 
For the TDR system, a problem element is a combination of 
Tian, Di and Ren attributes.  Those problem elements that are 
favorable for human survival are in the solution set S.  The 
problem set P consists of problem elements p1, p2, p3, ..., pn, 
and each problem element is specified by a vector consisting 
of the attributes from Tian (heaven), Di (earth) and Ren 
(human being), i.e., 

     pj = (t1j, t2j, ..., d1j, d2j, ..., r1j, r2j, ...) 
 
For example, the Tian attributes tij are atmospheric variables 
such as amount of sunlight and water level, the  Di attributes 
dij are residential variables such as ambient temperature and 
humidity, and the Ren attributes rij are personal health 
indicators such as blood pressure, EKG reading, heart rate, etc.  
 

pj = (sunlightj, waterlevelj, tempj, humidityj, 
bloodpressurej, spo2valuej, heartratej) 

 
Initially some attributes may not be assigned any value and 
some may already have pre-assigned values. After most 
attributes have been assigned values one can decide whether 
the problem element is in the solution set. (The simplest case 
is that each attribute Aij has a solution range Rj, and if every 
attribute Aij falls within the solution range Rj then the 
problem element pj is in the solution set S). 
 
In the TDR system, there are continuous interactions among 
the three super-components Tian, Di and Ren.  Each super-
component has its own computation cycle, which is basically 

the following:   Starting from some problem set P0, the super-
component first adapts to the input from the environment as 
well as from other peer super-components.  It then tries to find 
related problem elements by enumeration.  After those 
problem elements not in the solution set have been eliminated 
either using the elimination operator or using the concentration 
operator, the termination condition can be tested.  The 
termination condition is expressed by [guard x, y] where Cycle 
x is the current cycle and Cycle y is the cycle to jump to. 
Whenever one super-component completes its computation 
cycle, if a solution is found the computation ends, otherwise 
the control is transferred to the next super-component.  Since 
there are three super-components, we will have three 
computation cycles. 
 
The Tian super-component has computation Cycle1: 

Cycle1 [guard1,2]: P10 +adapAij= P11 -enum< P12  >elim- 
P13 =propAij+ P14 

Likewise, the Di super-component has computation Cycle2: 
Cycle2 [guard2,3]: P20 +adapAij= P21 -enum< P22  >elim- 

P23 =propAij+ P24 
Finally, the Ren super-component has computation Cycle3: 

Cycle3 [guard3,1]: P30 +adapAij= P31 -enum< P32  >elim- 
P33 =propAij+ P34 

 
Notice the three computation cycles together form a higher-
level computation cycle. High-level computation cycles are 
essential for a complex human-centric psycho-physical system 
such as the TDR system. 
 
3.3. Multi-Level Computation Cycles 
 
The three computation cycles together form a higher-level 
computation cycle. High-level computation cycles are 
essential for a complex human-centric psycho-physical system 
such as the TDR system.  In the above specification, we can 
replace [guard1,2], [guard2,3] and [guard3,1] by [guardX,2], 
[guardX,3] and [guardX,1], respectively. 
 
When computations in Cycle1, Cycle2 or Cycle3 is 
unsuccessful and solution set is empty, control is transferred to 
the next Cycle in cyclic order, i.e. first Cycle1, then Cycle2, 
then Cycle3 and then returning to Cycle1.  On the other hand, 
when computations in Cycle1, Cycle2 or Cycle3 are 
successful and solution set is non-empty, control is transferred 
to the Chi super-component computation CycleX at the next 
higher level.  CycleX is specified as follows: 

 
CycleX [guardX,1]: PX0 +Aijadap= PX1 -enum< PX2  

>elim- PX3 =propAij+ PX4 
 
In the above, the +Aijadap=   may be the input propagated from 
the lower-level super-components, or from the super-
components of other human observers (see below). 

 
If computation in CycleX is unsuccessful, control is returned 
to the Tian computation Cycle1 (or the Di computation Cycle2,  
the Ren computation Cycle3, respectively).  If computation in 
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CycleX is successful, then the computation terminates in 
CycleX and the Dashboard will display the results, i.e., the 
estimated total-Chi values. 

The subjective evaluations can be entered by the principal user 
himself/herself based upon his/her subjective feelings.  For 
example if he/she feels “sweaty at night”, he/she will enter a 
value close to 10 (on a scale of 1 to 10) for the “sweaty-at-
night” attribute for Chi. 

It is also possible to formulate CycleX so that other human 
observers who are “friends” of the principal user can fill in the 
subjective Chi attributes This social network of human 
observers can also vote on updating the Chi attributes for the 
principal user.  These human observers may even be allowed 
to fill in the objective Chi attributes as if they were sensors. 
Thus this TDR system is an iterative slow intelligence system, 
or what we call the Sentient Net.  
 
 
 
4. Social Network Modeling 
 
A social network can be modeled by a graph G = (P, A)  
where persons pi in the social network are modeled by nodes P 
and their relations are modeled by arcs A.   A node can be 
attributed. For example, an attribute value 0.7 could mean a 
0.7 probability of propagating its influence. An arc can also be 
attributed. For example, an attribute value 5  could mean 5 
units of interaction between two persons pi and pk represented 
as nodes. 
 
A person pi is I-related to pk if there is an arc between pi and 
pj and there are at least I units of interaction between them.  A 
person pi is (I,D)-related to pk if  there exists an I-related path 
from pi to pj and  d(x,y) =< D is the shortest distance or 
minimum path length.   
 
The slow intelligence operators are as follows: 
 
Operator enumD:  P1 -enum< P2 where P2 = { y:  y is (I,D)-
related-to some x in P1, e.g. d(x,y) =< D} 
 

Operator elim: P1 >elim-  P2 where P2 = {x: x is in P1 and x 
is in S} 
 

Operator conct: P1 >conc= P2  where P2 = {x:  x is in P1 and  
th(x) >= t  where t is a predefined threshold } 
 
Operator adap: pj +Aijadap=  pk is to adjust pj based on input 
attribute Aij, for example, by appending Aij to pj with 
probability q,  and not appending Aij with probability 1-q. 
 
Operator prop: pj =propAij+ pk   is to output/propagate 
attribute Aij to pk with probability q. 

 

We focus on the enumeration operator and with inputs of 
arguments, the output will be a system with super-components 
where enumeration will be performed in each cycle. In order 
to better formulate the problem, the following assumptions are 
made: 
Assumption 1: All the elements in the problem set are 
connected to each other. That is, for every pair of elements x 
and y, d(x, y)<D is true.   
 
Assumption 2: For every cycle in the system, each element 
having a probability less than 1 may be explored. In other 
words, not all the elements satisfying the condition d(x, y)<D 
will be explored. 
 
Assumption 3: The solution set is achieved when the problem 
set is stable at cycle_t where cycle_i and cycle_j in the 
predefined range cycle_t-k to cycle_k satisfies the following 
condition:  the difference between every attribute of a certain 
element in   cycle_i and the attribute in cycle_j is smaller than 
a predefined threshold dij. 
 
The first assumption simplifies the distance computation 
between elements. The second assumption restricts ourselves 
to real social networks.  The third assumption is the definition 
for a stable solution for computation cycles. 
 
We are formulating a social network by observing the 
influence of opinions. Thus picking a reasonable solution set is 
important. Opinions tend to be more steady when the profiles 
are fully interacted.   
 
Our elements are P1, P2, … Pn, where each Pi represents a 
person in a group. Each person is defined by their [id, opinion, 
influencePercentage]. The id is a unique identifier for that 
person, and the opinion is the subject that would change 
during the computational cycles. Finally, the influence 
percentage is the indicator of how influential is that person (i.e. 
how capable is that person in changing others’ opinions). 
 
After knowing the nature of our elements, now we describe 
the problem set that contains those elements. Each problem set 
is divided into two sub sets: High Influence Group, and Low 
Influence Group. 
 
The interaction happens in a sub-set basis. That is, H is 
interacting with L and vice versa. As expected, the result of 
this interaction is a potential change in the opinion of the 
element having interacted with the group. This change might 
happen, or it might not. It is a result of the average influence 
of all the elements in the interacting group. 
 
Assuming that a change happened, there are two possible 
scenarios: the change in the opinion is either influential or 
mind changing.  
 
The influential model is changing the element having 
interacted with group opinion based on the opinion of the 
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majority of the interacting group. For example, if the majority 
of the interacting group has the opinion X, then the change in 
element of the interacted group would be to the opinion X 
with some probability. 
 
The other model causes the interacted group to change its
opinion to the other one (in case of binary domain of opinions) 
regardless of what is the opinion of the interacting group. 

 

 
Now we present the formal definitions of the model. From the 
abstract machine, we have the definition of the enumerator 
operator: 
 
P1 -enum< P2 where P2 = { y:  y is related-to some x in P1, 
e.g. d(x,y) < D} 
 
This definition is extended in our model to the following: 
 
P1 -enum< P2 where P2 = { y:  y is x in P1, with a chance that 
its opinion is changed} 
 
Each Pi is represented as a vector: 
 
Pi = [id, opinion, influence], where id is a unique integer, 
opinion is a binary variable that represent an opinion, and 
influence is a percentage. 
  
The set of elements is divided into two subsets (Figure 1): 
 
H = {P1, P2, …, Pi} 
L = {Pj, …, Pn} 
Where H � L = P 

 

 
Figure 4. An example of a problem set with 8 elements. 

 
During each interaction cycle, the interaction between the 
groups is represented by IH and IL, where IH is the percentage 
with which the group H affects the L group. The opposite 
holds for IL (see Figure 4). The probability with which an 
interaction will change an opinion of an element in the other 
group is calculated as follows: 

 

 IH =  
 
 

         IL =  
  
Thus, each interaction cycle is a two-way interaction. From H 
to L (H Æ L) and from L to H (L Æ H). However, the 
percentage of changing the opinion of elements is different in 
each interaction. 
 
 
 
5.  The Interaction Models 
 
When the the people element Pi is to have its opinion changed, 
there are two ways to change as mentioned above and 
discussed in [3]: 
 
The Influencing Model: In this mode, if the majority of the 
interacting group has the opinion X, then the element that is 
interacted with will have the opinion changed to X (even if it 
is already has X as its opinion). 
 
The Mind Changing Model: In this model, the opinion of the 
interacting group is irrelevant. Hence, if the element is going 
to change its opinion, it will change it to an opinion that is (not 
its current one) (e.g. flipping the opinion in binary domain 
opinions). 
 
Some scenarios will now be presented. A video demonstration 
is available at: http://screencast.com/t/n48teU5c 
 
We first present the influential model with two examples: 
 

1) Example 1: | H |  = 20, | L | = 180 
H group influencing percentage = [7%, 10%] 
L group influencing percentage = [1%, 3%] 
5%    in H have their opinion for ‘0’ 
95% in L have their opinion for ‘0’ 
Number of interactions is: 30 (bidirectional) 
(See Figure 5). 

2)  
3) Example 2: | H |  = 100, | L | = 100 

H group influencing percentage = [80%, 90%] 
L group influencing percentage = [10%, 20%] 
5%    in H have their opinion for ‘0’ 
95% in L have their opinion for ‘0’ 
Number of interactions is: 30 (bidirectional) 
(See Figure 6). 
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Figure 5.  # of voters over # of interactions for Example 1. 

 

 
Figure 6. # of voters over # of interactions for Example 2. 

 
From the above two examples, we see that the influence 
percentage controls the speed of convergence towards the 
“unified opinion”. 
 
Next we will show the behavior of the Mind Changing Model 
with the same two examples using the same parameters: 
 
Example 3:| H |  = 20, | L | = 180 
H group influencing percentage = [7%, 10%] 
L group influencing percentage = [1%, 3%] 
5%    in H have their opinion for ‘0’ 
95% in L have their opinion for ‘0’ 
Number of interactions is: 30 (bidirectional) 
(see Figure 7) 

 
Figure 7. # of voters over # of interactions for Example 3. 
 

1) Example 4:| H |  = 100, | L | = 100 
H group influencing percentage = [80%, 90%] 
L group influencing percentage = [10%, 20%] 
5%    in H have their opinion for ‘0’ 
95% in L have their opinion for ‘0’ 
Number of interactions is: 30 (bidirectional) 
(See Figure 8). 
 
The interesting observation is that the behavior is not 
predictable. It changes due to people changing their minds, 
hence the fluctuation. The codes are available at this URL: 
https://dl.dropboxusercontent.com/u/19443460/code.z
ip

 
Figure 8. # of voters over # of interactions for Example 4. 
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6. Circulated Model 
 
The Circulated model aims to weaken the Assumption 1 in the 
previous assumption in the social network model.  The 
Assumption 1 made the social network model simpler by 
assuming that all nodes in the problem set are connected. 
However, this is nearly impossible in real social network 
models. Distance matrix is one of the most important features 
in the model and in this section, we introduce a distance 
matrix in our model to weaken the previous assumption. 
 
In a circulated Model, communication is possible among all 
nodes albeit with different distance matrix.  Adjacent nodes 
are connected with distance equal to 1 and the communication 
is bilateral, i.e. every node can influence its adjacent node with 
distance equal to 1. The influence is transitive, i.e. node1 can 
only influence node3 by passing the influence to node2 if 
node1 and node3 are not adjacent.   A Circulated Model with n 
nodes is called Circulate-n model and a Circulate-5 model is 
shown in Figure 9. 

 
Figure 9. Circulate-5 model. 

 
Node1 initiates an opinion influence and passes the influence 
to Node2, and Node2 passes the influence to Node3 by adding 
its’ own views. In this case, Node1 influences Node3 by 
Node2 and it is one of the two ways that Node1 can influence 
Node3 whereas another ways is through: 
 Node1 -> Node5 -> Node4 -> Node3 
Compared to real life social network models like Facebook or 
Twitter, the Circulated Social Network Model simplifies the 
relations of nodes and assumes that each node only interacts 
with its neighbors and the interaction to other nodes  in the 
same group can be accomplished by interacting with its 
neighbors. 
 
In this case, each node should store the probability of 
interacting with its neighbors. The distance matrix of each pair 
of nodes can be derived in the Circulate Social Network 
Model by the minimum distance of each path. In the above 
example, the distance between Node1 and Node3 is: 
 

dist(Node1, Node3) =  min{d(Node1, Node2, Node3), 
 d(Node1, Node5, Node4, Node3)} =  min{2, 3} = 2 

7. Teacher Student Model 
 
Figure 10 illustrates not only the teacher student model but 
also how the TDR system actually works in social networking.  
Obviously the teacher student model fits the TDR system very 
well. In Figure 10 as well as the following scenario, message 
types are indicated by M9, M10, etc.   

 
Figure 10. Teacher Student Model. 

 
A scenario on how social network works in TDR system is as 
follows: 
 
1. The SocialNetwork Sensor gathers information of Chi 
attributes (tongue, fatigue, weakBreath, pulse, sweaty) as well 
as the id and originator and send it to SocialNetwork Monitor 
through message M9. 
2. SocialNetwork Monitor receives message M9 and calculates 
the total-Chi attribute using the same algorithm as from Chi 
attribute. 
3. SocialNetwork Monitor sends the 6 attributes as message 
M10 to SocialNetwork Advertiser. 
4. SocialNetwork receives message M10 and passes it to the 
SocialNetwork Model. 
5. SocialNetwork Model gets the most recent value of the 
total-Chi attribute from Chronobot Database and compares it 
with the total-Chi from message M10 to evaluate the 
correctness of this record.  
6. The SocialNetwork model adjusts the weights of each 
profile in the model and uploads the Chi attributes to 
Chronobot Database. 
 
A profile in the group with higher weight is more reliable in 
judging others and we call this kind of profile teacher profiles. 
In the group model, there is one or more profile which is 

P(upload)=P.weightget 
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called teacher profile who has a higher weight while the other 
profiles have lower weights. In order to propagate the weights 
to the Advisor component that uploads data to the Chronobot 
Database, we transfer the weight of each profile to the 
probability of uploading P(upload) = P.weight. In this case, 
whether a record of evaluations from a specific profile should 
be uploaded or not is associated with its weight attribute. The 
evaluation from a teacher is most likely to be uploaded to the 
database while an evaluation from a student is less likely to be 
uploaded. And an opinion from a student whose weight is 
small is less likely to be trusted and we upload this judgment 
to the database with a smaller probability. And thus all the 
records uploaded to the Chronobot Database are reliable.  In 
this way, we transfer the weight of the profile to the 
trustworthiness of a judgment from a specific profile. 
 
After a few computation cycles, students can learn the skills of 
n from the teacher and their weights will be increased so that 
they can produce more reliable evaluations. And it is the same 
as in the teacher-student relationship in the real life. As 
students learn from the teacher, the students will have gain the 
same power as the teacher. Once we make an assumption that 
the teacher’s evaluations are always correct which means the 
teacher acts as an Oracle, the whole system will converge to a 
self-learning system and every profile in the system will be 
knowledgeable about the evaluation. And as the system 
improves, the evaluations will become more objective.  
 
One important assumption we made in this model is that we 
restrict the number of profiles to be a small number, usually 
less than 10. A person is not likely to have a large number of 
friends that he can trust to evaluate his state of health. Since a 
small size group is easier to manipulate, this assumption 
makes the Teacher Student Model more robust. 
 
 
8. Experimental Results for Teacher Student Model 

 
In order to prove that the Teacher Student Model will 
converge to a stable status, we set up the following offline 
experiment. There are 7 members in the group including a 
teacher while the rest of the members are students. Teacher 
owns the weight of 1 which means every evaluation originated 
by the teacher is for sure reliable. On the other hand, students 
owns weights = 0.3 which means 3 in 10 evaluations 
originated by a student are correct and the rest are false. And 
with the hops forward, students can learn from the teacher and 
to gain the skill of judging correctly. If a student generates an 
evaluation that matches the teacher’s evaluation, we increase 
his/her weights by a small value. And if he/she made a mistake, 
we decrease his/her weights in making evaluation. Thus only 
the weight changes in students worth tracing because the 
teacher is assumed to always generate correct evaluations. In 
other words in this Teacher Student Model, teacher acts as an 
Oracle and all the evaluations by the teacher are assumed to be 
correct.  

Before starting the experiment, we create an evaluations pool 
where all the evaluations come from the teacher. The 
evaluations originated by students will be compared with those 
in the evaluations pool. 
 
The experimental results show that as the hops (cycles) go on, 
the weights of each student increase steadily and all converge 
to 1 at the 14th hop. It successfully simulates the learning steps 
in real life. As the students learn from the teacher, they will 
gain the ability to evaluate state of health that the teacher has. 

 
Figure 11.  Experimental results. 

 
In order to show how the learning converges, we did the 
following experiments: Three users, user0, user2 and user4 are 
incorporated in this experiment. User0 acts as the master in the 
group which means every  made by user0 is set to be the 
standard. User2 act as a student and he should learn from the 
master how to make evaluations. Once user2 made an 
evaluation which is similar to the master, the reliability of 
user2 should be increased. Weight of user2 is the measurement 
of his/her reliability. Theoretically, as time goes by and user2 
keeps on learning from the master, the weight of user2 should 
converge to 100 which is the same as the master. The last user 
incorporated in the experiment is user4, who is a patient. Both 
users0 and user2 make evaluations about user4. If the 
evaluation from user2 is similar to that of user0, we expect to 
see that the weight of user2 increases. The initial weight of 
user2 is set to 73. The master first made evaluations about 
user4 and the scores are (5, 5, 5, 5, 5), and the student later 
made an evaluation (5, 5, 5, 4, 5) about user4. We checked 
back the weight of user2, it increased to 74. This showed the 
ability of convergence of the Social Network Model in TDR 
system. 
 
 
9. Discussion 
 
One of our main goals is to expand the TDR system for the 
computation of Chi (also spelled as Qi in Chinese 
transliteration system HanYu PinYin). The Chi super-
component is regarded as at a higher level. It has attributes 
including both objective measurements and subjective 
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evaluations [4]. This makes the Chi super-component both 
pro-active and adaptive at multiple levels. 
 
The dashboard for TDR system can be further refined.  When 
user clicks on “view details” for the Chi super-component, a 
list of attributes for Chi is shown.  The objective 
measurements in this list is filled by the multi-level 
computation cycles based upon actual measurements.  The 
subjective evaluations are entered by the principal user 
himself/herself based upon his/her subjective feelings, or 
his/her  friends, teachers and a master with deep knowledge. 
  
The convergence of the opinion shows that a steady opinion of 
the group is met which means the solution set is achieved 
under the three assumptions. The Teacher Student model 
successfully resolves the peer evaluation problem in TDR 
system and can play an important role in future generations of 
the TDR system.  In the future, we plan to adjust the model to 
having more than one teacher, so that user can learn both from 
the master and from other teachers or selected friends. 
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Appendix:  Data Analysis and Similarity Retrieval 
 
A slow intelligence system SIS includes many kinds of 
original data from Tian, Di, Ren and Chi sub-systems. In the 
TDR system, those data are used to judge a person’s heath 
status.   Two important functions provided by the TRD system 
are data analysis and similarity retrieval.  In data analysis, data 
will be analyzed so that alert conditions are detected.  In 
similarity retrieval, data records similar to the current data 
record are found. 

1. Data Analysis 
 
The Analyze Model is specified by:(V, V1, V2, V3, VT, VF, 
VP, VS, VW), where 

V is final result, which may be “Normal”, ”Abnormal” 
or ”N/A”, 

V1 is the result of Chi, which may be is 
“Normal”, ”Abnormal” or ”N/A”, 

V2 is the result of bloodpresure, which may be is 
“Normal”, ”Abnormal” or ”N/A”, 

V3 is the result of SPO2, which may be is 
“Normal”, ”Abnormal” or ”N/A”, 

VT is the result of Tongue, 
VF is the result of Tongue, 
VP is the result of Tongue, 
VS is the result of Tongue, 
VW is the result of Tongue, 
VT, VF, VP, VS, VW have the same value range: 0, 1, 2, 3 

or 4. 
 

 

 
Where Dia is test result for low pressure, and Sys is for 

high pressure.  
RegularLow and RegulaHigh has a definition as following 

table. 

 

 
 
V=V1&V2&V3, where ‘&’ is operator, which is defined 

as follows. 
“Normal” & ” Normal”=” Normal” 
“Normal” & ”Abnormal”=”Abnormal” 
“Normal” & ”N/A”=“Normal” 
”Abnormal” & ”Abnormal”=”Abnormal” 
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”Abnormal” & ”N/A”=”Abnormal” 
”N/A” & ”N/A”=”N/A” 

 
The Data Analysis Algorithm is as follows: 
 
ΰ1α Get  records  from  database  according  to  received 

message, 
ΰ2α Get  information which  includes VTΕVFΕVPΕVSΕ

VWΕbloodpresureΕSPO2 from all records of the day,  
ΰ3α If can’t get enough information at last step, get latest 

information from the week, 
ΰ4α After  finished  the  (3)  step,  records  for  some  test 

items  still does not  exist,  those  items  should be  ignore 
when computing final result. 

ΰ5α If  there  is not  any  test  record  in  the database,  the 
result  is defined as N/A, and  insert  it  into  the database, 
end of algorithm,  

ΰ6α According  to the  formula V=V1&V2&V3, we can get 
the  result(“Normal”  or  “Abnormal”)  and  insert  into  the 
database, end of algorithm. 

 
 
2. Similarity Retrieval 
 
This function will retrieve other users’ records, and find out 
few records that most similar to the current user’s records. 
This is helpful for user or doctor to make a comparison to 
enhance his/her understanding of their own situation. For 
example, if your record is similar to a patient in the last few 
days, you would better to be aware of your own health 
condition. In contrast, if your record is similar to a healthy 
people, it gains your confidence of your health condition.  

The reason why nearest neighbor algorithm is suitable for this 
system. One of the reason is, there is almost no assumptions 
about the data, the only assumptions implied by distance 
function. In addition, this algorithm is a non-parametric 
approach, which is mean the data will tell us everything and 
the system do not need to have any prior knowledge about the 
data. Although, nearest neighbor algorithm seems fit the 
system perfectly, it has 2 main disadvantages. One is the 
algorithm sensitive to irrelevant attributes, also known as 
dimension curse. Which is mean, high dimension data makes 
the distance meaningless. Fortunately, the data in the system is 
5-dimension data, thus the system do not have this problem. 
Another disadvantage is the algorithm is computationally 
expensive, either space wise and time wise. For space wise, 
the algorithm need to store all examples. However, the system 
has to keep all the records anyway, therefore, this is not a 
problem for the system. For time wise, the system has to 
compute distance to all records with time complexity , 
where n is number of existing records, d is cost of computing 
distance. It is easy to know that, with increasing of n, the 
system will become slower. The solution in this system is, it 
only uses recent data so that to control the total number of 
records involve in the calculation. Due to property of slow 
intelligence system, data were collected continuously in each 
cycle, thus missing data will appear in the records. To deal 
with missing data, the system just simply ignores the 
incomplete records. To sum up, the nearest neighbor algorithm 
is one of the most suitable for this system. 
 

 
To find out similar records, the system uses a simplified K 
Nearest Neighbor algorithm. The system treats each record as 
a 5 dimensions’ data. The dimensions are Chi factors defined 
in the system, they are sweaty, pulse, weakBreath, fatigue, and 
tongue. Each dimension represented by an integer from 1 to 5, 
that is the score for a specific Chi factor.  
 
After the system retrieve all others records, it calculates the L2 
distance (Euclidean distance) between current user’s record 
and each other’s records using 
 

 
 
where c is current user’s record, o is one of other’s record, s is 
score of sweaty, p is score of pulse, w is score of weakBreath, 
f is score of fatigue, and t is score of tongue. 
 
When the system knows the distances between current user’s 
record and others’ records, it can find out the most similar 
records easily by looking at the distances. Since find similar 
function do not need to perform any further prediction among 
current data, thus this can be the end of the nearest neighbor 
algorithm. 
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