
Social Network Models for the TDR System

YingJie Tang, HaoRan Zhang, ZhiJian Liang and Shi-Kuo Chang
Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15260, USA
yit20@pitt.edu, colinzhang@cs.pitt.edu, zhijianliang@163.com, chang@cs.pitt.edu

Abstract—The TDR system is an experimental multi-level
slow intelligence system for personal health care. The TDR
system can be used by a single user or a group of users who
will interact to understand, maintain and improve each other’s
state of health. In this paper, we simulate social networks by
applying the Abstract Machine model. Two social network
models are described: the Circulated Model and the Teacher
Student Model. We have incorporated the Teacher Student
Model into the Chi super-component of the TDR system and
obtained positive experimental results.

Keywords— Personal health care system, slow intelligence
system, social network, abstract machine model.

1. Introduction

An experimental multi-level slow intelligence system for
personal health care, called the TDR system, was developed as
a test bed for exploring and integrating different applications
in personal health care, emergency management and social
networking [1]. The TDR system mainly consists of three
super-components: Tian, Di and Ren. According to the
Chinese philosophy these three super-components are the
essential ingredients of a human-centric psycho-physical
system. They can be thought of as human beings (Ren)
interacting with the environment consisting of heaven (Tian)
and earth (Di). For personal health care, there is a fourth
higher level super-component called Chi (or Qi), which in this
context represents the state of health of a person (or persons).

Decision making in TDR system is through multiple
computation cycles involving the super-components to
increase the chances of survival and well being of human
beings (or groups). Any action based on only one aspect of the
environment without considering the other aspects could
reduce the chances of survival, thus iterative, multiple
computation cycles are crucial for the TDR system.

The TDR system can be used by a single user, or a group of
users who will interact to understand, maintain and improve
each other’s state of health. In this paper, we investigate the
social network models for the TDR system.

The paper is organized as follows. Section 2 presents the GUI
interface of the TDR system so that the reader can understand
how the TDR system works in practice. In Section 3 an
Abstract Machine model for the computation cycles is

presented. In Sections 4 and 5 we show how and what part of
the Abstract Machine model is extended to incorporate the
social network model into interaction models. Based upon this
approach, we describe two social network models: The
Circulated Model (Section 6) and the Teacher Student Model
(Section 7). We have incorporated the Teacher Student Model
into Chi component in the TDR system and obtained positive
experimental results (Section 8). In Section 9 we discuss the
implications and further research.

2. The Web GUI of the TDR System

In this section, we describe the Web GUI of the TDR system
so that the reader can understand how the system works in
practice.

The dashboard is the main GUI interface of the TDR system.
As illustrated by Figure 1 it provides a high-level overview of
the data in the system. On the left side, it has a menu panel
that contains all the actions the user can perform, including
activating and deactivating super-components. For the admin
user, this menu will also include addition, deletion and
modification of regular users.

Figure 1. The dashboard for Web GUI of TDR system.

Figure 2. The Carousel.

119

DOI reference number: 10.18293/DMS2016-049

There is a carousel that displays all super-components in
rotation, four at a time for the PC screen and only one for the
smart phone screen. This vividly demonstrates the idea of
computation cycles in the TDR system. A component’s banner
is in tranquil state (blue or green color) until an alert is
received and then it changes to elevated state (orange or red
color).

As shown in Figure 2, when the user clicks on the “View
Details” button at the lower right part of the dashboard, a table
will appear beneath the carousel panel to display all records
that belong to the current user. For each entry, it contains the
date and time of a record, the sensor type, the data type, the
actual reading of the data, and the originator. This scheme
allows flexibility and scalability, as in the future there might
be more and more sensors added to the TDR system. In
Figure 2, the first record is the room temperature from the
Earth (Di) super-component, and the other records are the
EKG recordings from the Human (Ren) super-component.

Figure 3. Visualization of fatigue in time.

If the user is communicating remotely with his/her doctor, a
user might want to specify the record ID so that the doctor
knows exactly what entry he/she is referring to. As shown in
Figure 3, by clicking on the “Draw Graphs” button a graph
showing the data-to-day changes of a selected data item can
also be displayed by the GUI for visualization by the user or
the doctor.

By clicking on the “Analyze Data” button at the lower right
part of the dashboard, a user’s records will be analyzed to
evaluate his/her state of health such as the total-Chi of a
person. Clicking on the “Find Similar” button will retrieve
other user’s records similar to the current user’s record so that
the user or the doctor can make a comparison to enhance
his/her understanding. The details on data analysis and
similarity retrieval are explained in the Appendix.

Interestingly, the user in a social group can use the same TDR
GUI to retrieve other user’s records, analyze them to evaluate
their state of health, etc. If a particular user is a teacher or a
‘master’ with deep knowledge, this user can influence others
to understand, maintain and improve one’s state of health.

Therefore the TDR system can also be used by social groups
for collective personal health care.

3. The Abstract Machine Model for Computation
Cycles

A slow intelligence system SIS typically possesses at least two
decision cycles [2]. The first one, the quick decision cycle,
provides an instantaneous response to environmental changes.
The second one, the slow decision cycle, tries to follow the
gradual changes in the environment and analyze the
information acquired from the environments or peers or past
experiences. The slow/quick decision cycles enable the SIS to
both cope with the environment and meet long-term goals.

To model such decision cycles we introduce an Abstract
Machine model of multiple computation cycles in Section 3.1,
and then specify the computation cycles for the TDR system in
Section 3.2. In Section 3.3 we describe multi-level
computation cycles and how to apply the abstract machine
model to social networks.

3.1. The Abstract Machine Model

The Abstract Machine Model is specified by: (P, S, P0,
Cycle1, ...,, Cyclen), where

P is the non-empty problem set,
S is the non-empty solution set, which is a subset of Po,
P0 is the initial problem set, which is a subset of P,
Cycle1, ...,, Cyclen are the computatin cycles.

Each computation cycle will start from an initial problem set
and apply different operators such as +adapAij=, -enum<,
>elim-, =propAij + and >conc= successively to generate new
problem sets from old problem sets until a non-empty solution
set is found. If a non-empty solution set is found, the cycle is
completed and later the same computation cycle can be
repeated. If on the other hand no solution set is found, a
different computation cycle is entered.

As an example the problem set P consists of problem elements
p1, p2, p3, ..., pn, and each problem element pj is specified by
a vector consisting of attributes Aij. A computation cycle x
will attempt to find a solution set by first adapting based upon
input from the environment: Px0 +adapAij= Px1 that is to adapt
based on attribute Aij, for example, by appending Aij to each
element in Px0 to form Px1.

Then it may try to find related problem elements: Px1 -enum<
Px2 where Px2 = { y: y is related to some x in Px1, e.g. d(x,y)
< D}. Next it may try to eliminate the non-solution elements:
Px2 >elim- Px3 where Px3 = {x: x is in Px2 and x is in S}.

Finally the solution elements (or alert messages if there are no
solutions) may be propagated to peers: Px3 =propAij+ Px4 that
is to export/propagate attribute Aij to peers.

120

Therefore this computation cycle can be specified succinctly
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2
>elim- Px3 =propAij+ Px4
The above expression is a specification of the computation
cycle, not a mathematical equation. This expression should be
read and interpreted from left to right.

If Px4 is non-empty, the Abstract Machine will complete this
cycle of computation and terminate at the end of Cyclex, and it
may later resume at the beginning of Cyclex. Otherwise Px4 is
empty and the Abstract Machine will jump to a different
Cycley. This is specified by [guard x,y] where x is the current
computation cycle if a solution set is found (Px4 is non-empty),
and y is the computation cycle to enter if no solution set is
found (Px4 is empty). Before an Abstract Machine completes
its current computation cycle, it will propagate the solution set
(or alert messages) to its peers.

In the above, the elimination operator can be replaced by the
concentration operator, whenever the solution set is not known
apriori. The concentration operator applies a predefined
threshold to filter out problem elements below the threshold:
Px1 >conc= Px2 where Px2 = {x: x is in Px1 and th(x) above
a predefined threshold t}.

3.2. Multiple Computation Cycles of TDR System

For the TDR system, a problem element is a combination of
Tian, Di and Ren attributes. Those problem elements that are
favorable for human survival are in the solution set S. The
problem set P consists of problem elements p1, p2, p3, ..., pn,
and each problem element is specified by a vector consisting
of the attributes from Tian (heaven), Di (earth) and Ren
(human being), i.e.,

 pj = (t1j, t2j, ..., d1j, d2j, ..., r1j, r2j, ...)

For example, the Tian attributes tij are atmospheric variables
such as amount of sunlight and water level, the Di attributes
dij are residential variables such as ambient temperature and
humidity, and the Ren attributes rij are personal health
indicators such as blood pressure, EKG reading, heart rate, etc.

pj = (sunlightj, waterlevelj, tempj, humidityj,
bloodpressurej, spo2valuej, heartratej)

Initially some attributes may not be assigned any value and
some may already have pre-assigned values. After most
attributes have been assigned values one can decide whether
the problem element is in the solution set. (The simplest case
is that each attribute Aij has a solution range Rj, and if every
attribute Aij falls within the solution range Rj then the
problem element pj is in the solution set S).

In the TDR system, there are continuous interactions among
the three super-components Tian, Di and Ren. Each super-
component has its own computation cycle, which is basically

the following: Starting from some problem set P0, the super-
component first adapts to the input from the environment as
well as from other peer super-components. It then tries to find
related problem elements by enumeration. After those
problem elements not in the solution set have been eliminated
either using the elimination operator or using the concentration
operator, the termination condition can be tested. The
termination condition is expressed by [guard x, y] where Cycle
x is the current cycle and Cycle y is the cycle to jump to.
Whenever one super-component completes its computation
cycle, if a solution is found the computation ends, otherwise
the control is transferred to the next super-component. Since
there are three super-components, we will have three
computation cycles.

The Tian super-component has computation Cycle1:

Cycle1 [guard1,2]: P10 +adapAij= P11 -enum< P12 >elim-
P13 =propAij+ P14

Likewise, the Di super-component has computation Cycle2:
Cycle2 [guard2,3]: P20 +adapAij= P21 -enum< P22 >elim-

P23 =propAij+ P24
Finally, the Ren super-component has computation Cycle3:

Cycle3 [guard3,1]: P30 +adapAij= P31 -enum< P32 >elim-
P33 =propAij+ P34

Notice the three computation cycles together form a higher-
level computation cycle. High-level computation cycles are
essential for a complex human-centric psycho-physical system
such as the TDR system.

3.3. Multi-Level Computation Cycles

The three computation cycles together form a higher-level
computation cycle. High-level computation cycles are
essential for a complex human-centric psycho-physical system
such as the TDR system. In the above specification, we can
replace [guard1,2], [guard2,3] and [guard3,1] by [guardX,2],
[guardX,3] and [guardX,1], respectively.

When computations in Cycle1, Cycle2 or Cycle3 is
unsuccessful and solution set is empty, control is transferred to
the next Cycle in cyclic order, i.e. first Cycle1, then Cycle2,
then Cycle3 and then returning to Cycle1. On the other hand,
when computations in Cycle1, Cycle2 or Cycle3 are
successful and solution set is non-empty, control is transferred
to the Chi super-component computation CycleX at the next
higher level. CycleX is specified as follows:

CycleX [guardX,1]: PX0 +Aijadap= PX1 -enum< PX2

>elim- PX3 =propAij+ PX4

In the above, the +Aijadap= may be the input propagated from
the lower-level super-components, or from the super-
components of other human observers (see below).

If computation in CycleX is unsuccessful, control is returned
to the Tian computation Cycle1 (or the Di computation Cycle2,
the Ren computation Cycle3, respectively). If computation in

121

CycleX is successful, then the computation terminates in
CycleX and the Dashboard will display the results, i.e., the
estimated total-Chi values.

The subjective evaluations can be entered by the principal user
himself/herself based upon his/her subjective feelings. For
example if he/she feels “sweaty at night”, he/she will enter a
value close to 10 (on a scale of 1 to 10) for the “sweaty-at-
night” attribute for Chi.

It is also possible to formulate CycleX so that other human
observers who are “friends” of the principal user can fill in the
subjective Chi attributes This social network of human
observers can also vote on updating the Chi attributes for the
principal user. These human observers may even be allowed
to fill in the objective Chi attributes as if they were sensors.
Thus this TDR system is an iterative slow intelligence system,
or what we call the Sentient Net.

4. Social Network Modeling

A social network can be modeled by a graph G = (P, A)
where persons pi in the social network are modeled by nodes P
and their relations are modeled by arcs A. A node can be
attributed. For example, an attribute value 0.7 could mean a
0.7 probability of propagating its influence. An arc can also be
attributed. For example, an attribute value 5 could mean 5
units of interaction between two persons pi and pk represented
as nodes.

A person pi is I-related to pk if there is an arc between pi and
pj and there are at least I units of interaction between them. A
person pi is (I,D)-related to pk if there exists an I-related path
from pi to pj and d(x,y) =< D is the shortest distance or
minimum path length.

The slow intelligence operators are as follows:

Operator enumD: P1 -enum< P2 where P2 = { y: y is (I,D)-
related-to some x in P1, e.g. d(x,y) =< D}

Operator elim: P1 >elim- P2 where P2 = {x: x is in P1 and x
is in S}

Operator conct: P1 >conc= P2 where P2 = {x: x is in P1 and
th(x) >= t where t is a predefined threshold }

Operator adap: pj +Aijadap= pk is to adjust pj based on input
attribute Aij, for example, by appending Aij to pj with
probability q, and not appending Aij with probability 1-q.

Operator prop: pj =propAij+ pk is to output/propagate
attribute Aij to pk with probability q.

We focus on the enumeration operator and with inputs of
arguments, the output will be a system with super-components
where enumeration will be performed in each cycle. In order
to better formulate the problem, the following assumptions are
made:
Assumption 1: All the elements in the problem set are
connected to each other. That is, for every pair of elements x
and y, d(x, y)<D is true.

Assumption 2: For every cycle in the system, each element
having a probability less than 1 may be explored. In other
words, not all the elements satisfying the condition d(x, y)<D
will be explored.

Assumption 3: The solution set is achieved when the problem
set is stable at cycle_t where cycle_i and cycle_j in the
predefined range cycle_t-k to cycle_k satisfies the following
condition: the difference between every attribute of a certain
element in cycle_i and the attribute in cycle_j is smaller than
a predefined threshold dij.

The first assumption simplifies the distance computation
between elements. The second assumption restricts ourselves
to real social networks. The third assumption is the definition
for a stable solution for computation cycles.

We are formulating a social network by observing the
influence of opinions. Thus picking a reasonable solution set is
important. Opinions tend to be more steady when the profiles
are fully interacted.

Our elements are P1, P2, … Pn, where each Pi represents a
person in a group. Each person is defined by their [id, opinion,
influencePercentage]. The id is a unique identifier for that
person, and the opinion is the subject that would change
during the computational cycles. Finally, the influence
percentage is the indicator of how influential is that person (i.e.
how capable is that person in changing others’ opinions).

After knowing the nature of our elements, now we describe
the problem set that contains those elements. Each problem set
is divided into two sub sets: High Influence Group, and Low
Influence Group.

The interaction happens in a sub-set basis. That is, H is
interacting with L and vice versa. As expected, the result of
this interaction is a potential change in the opinion of the
element having interacted with the group. This change might
happen, or it might not. It is a result of the average influence
of all the elements in the interacting group.

Assuming that a change happened, there are two possible
scenarios: the change in the opinion is either influential or
mind changing.

The influential model is changing the element having
interacted with group opinion based on the opinion of the

122

majority of the interacting group. For example, if the majority
of the interacting group has the opinion X, then the change in
element of the interacted group would be to the opinion X
with some probability.

The other model causes the interacted group to change its
opinion to the other one (in case of binary domain of opinions)
regardless of what is the opinion of the interacting group.

Now we present the formal definitions of the model. From the
abstract machine, we have the definition of the enumerator
operator:

P1 -enum< P2 where P2 = { y: y is related-to some x in P1,
e.g. d(x,y) < D}

This definition is extended in our model to the following:

P1 -enum< P2 where P2 = { y: y is x in P1, with a chance that
its opinion is changed}

Each Pi is represented as a vector:

Pi = [id, opinion, influence], where id is a unique integer,
opinion is a binary variable that represent an opinion, and
influence is a percentage.

The set of elements is divided into two subsets (Figure 1):

H = {P1, P2, …, Pi}
L = {Pj, …, Pn}
Where H � L = P

Figure 4. An example of a problem set with 8 elements.

During each interaction cycle, the interaction between the
groups is represented by IH and IL, where IH is the percentage
with which the group H affects the L group. The opposite
holds for IL (see Figure 4). The probability with which an
interaction will change an opinion of an element in the other
group is calculated as follows:

 IH =

 IL =

Thus, each interaction cycle is a two-way interaction. From H
to L (H Æ L) and from L to H (L Æ H). However, the
percentage of changing the opinion of elements is different in
each interaction.

5. The Interaction Models

When the the people element Pi is to have its opinion changed,
there are two ways to change as mentioned above and
discussed in [3]:

The Influencing Model: In this mode, if the majority of the
interacting group has the opinion X, then the element that is
interacted with will have the opinion changed to X (even if it
is already has X as its opinion).

The Mind Changing Model: In this model, the opinion of the
interacting group is irrelevant. Hence, if the element is going
to change its opinion, it will change it to an opinion that is (not
its current one) (e.g. flipping the opinion in binary domain
opinions).

Some scenarios will now be presented. A video demonstration
is available at: http://screencast.com/t/n48teU5c

We first present the influential model with two examples:

1) Example 1: | H | = 20, | L | = 180
H group influencing percentage = [7%, 10%]
L group influencing percentage = [1%, 3%]
5% in H have their opinion for ‘0’
95% in L have their opinion for ‘0’
Number of interactions is: 30 (bidirectional)
(See Figure 5).

2)
3) Example 2: | H | = 100, | L | = 100

H group influencing percentage = [80%, 90%]
L group influencing percentage = [10%, 20%]
5% in H have their opinion for ‘0’
95% in L have their opinion for ‘0’
Number of interactions is: 30 (bidirectional)
(See Figure 6).

123

Figure 5. # of voters over # of interactions for Example 1.

Figure 6. # of voters over # of interactions for Example 2.

From the above two examples, we see that the influence
percentage controls the speed of convergence towards the
“unified opinion”.

Next we will show the behavior of the Mind Changing Model
with the same two examples using the same parameters:

Example 3:| H | = 20, | L | = 180
H group influencing percentage = [7%, 10%]
L group influencing percentage = [1%, 3%]
5% in H have their opinion for ‘0’
95% in L have their opinion for ‘0’
Number of interactions is: 30 (bidirectional)
(see Figure 7)

Figure 7. # of voters over # of interactions for Example 3.

1) Example 4:| H | = 100, | L | = 100
H group influencing percentage = [80%, 90%]
L group influencing percentage = [10%, 20%]
5% in H have their opinion for ‘0’
95% in L have their opinion for ‘0’
Number of interactions is: 30 (bidirectional)
(See Figure 8).

The interesting observation is that the behavior is not
predictable. It changes due to people changing their minds,
hence the fluctuation. The codes are available at this URL:
https://dl.dropboxusercontent.com/u/19443460/code.z
ip

Figure 8. # of voters over # of interactions for Example 4.

124

6. Circulated Model

The Circulated model aims to weaken the Assumption 1 in the
previous assumption in the social network model. The
Assumption 1 made the social network model simpler by
assuming that all nodes in the problem set are connected.
However, this is nearly impossible in real social network
models. Distance matrix is one of the most important features
in the model and in this section, we introduce a distance
matrix in our model to weaken the previous assumption.

In a circulated Model, communication is possible among all
nodes albeit with different distance matrix. Adjacent nodes
are connected with distance equal to 1 and the communication
is bilateral, i.e. every node can influence its adjacent node with
distance equal to 1. The influence is transitive, i.e. node1 can
only influence node3 by passing the influence to node2 if
node1 and node3 are not adjacent. A Circulated Model with n
nodes is called Circulate-n model and a Circulate-5 model is
shown in Figure 9.

Figure 9. Circulate-5 model.

Node1 initiates an opinion influence and passes the influence
to Node2, and Node2 passes the influence to Node3 by adding
its’ own views. In this case, Node1 influences Node3 by
Node2 and it is one of the two ways that Node1 can influence
Node3 whereas another ways is through:
 Node1 -> Node5 -> Node4 -> Node3
Compared to real life social network models like Facebook or
Twitter, the Circulated Social Network Model simplifies the
relations of nodes and assumes that each node only interacts
with its neighbors and the interaction to other nodes in the
same group can be accomplished by interacting with its
neighbors.

In this case, each node should store the probability of
interacting with its neighbors. The distance matrix of each pair
of nodes can be derived in the Circulate Social Network
Model by the minimum distance of each path. In the above
example, the distance between Node1 and Node3 is:

dist(Node1, Node3) = min{d(Node1, Node2, Node3),
 d(Node1, Node5, Node4, Node3)} = min{2, 3} = 2

7. Teacher Student Model

Figure 10 illustrates not only the teacher student model but
also how the TDR system actually works in social networking.
Obviously the teacher student model fits the TDR system very
well. In Figure 10 as well as the following scenario, message
types are indicated by M9, M10, etc.

Figure 10. Teacher Student Model.

A scenario on how social network works in TDR system is as
follows:

1. The SocialNetwork Sensor gathers information of Chi
attributes (tongue, fatigue, weakBreath, pulse, sweaty) as well
as the id and originator and send it to SocialNetwork Monitor
through message M9.
2. SocialNetwork Monitor receives message M9 and calculates
the total-Chi attribute using the same algorithm as from Chi
attribute.
3. SocialNetwork Monitor sends the 6 attributes as message
M10 to SocialNetwork Advertiser.
4. SocialNetwork receives message M10 and passes it to the
SocialNetwork Model.
5. SocialNetwork Model gets the most recent value of the
total-Chi attribute from Chronobot Database and compares it
with the total-Chi from message M10 to evaluate the
correctness of this record.
6. The SocialNetwork model adjusts the weights of each
profile in the model and uploads the Chi attributes to
Chronobot Database.

A profile in the group with higher weight is more reliable in
judging others and we call this kind of profile teacher profiles.
In the group model, there is one or more profile which is

P(upload)=P.weightget

Chronobot
Database

SocialNetwork
Sensor

SocialNetwork
Monitor M9 M10

 Model

Advertiser

P1

P6

P7

P5 P4

P3

P2

Network

Profile

Id
weight

N

NNooddee22

Nooddee11 NNooddee33

NNooddee55 NNooddee44

Influence1
Influence1,2

P(2,1)
P(2,3)

P(3,2) P(1,2)
P(1,5) P(3,4)

P(4,3)
P(4,5)

P(5,1)
P(5,4)

125

called teacher profile who has a higher weight while the other
profiles have lower weights. In order to propagate the weights
to the Advisor component that uploads data to the Chronobot
Database, we transfer the weight of each profile to the
probability of uploading P(upload) = P.weight. In this case,
whether a record of evaluations from a specific profile should
be uploaded or not is associated with its weight attribute. The
evaluation from a teacher is most likely to be uploaded to the
database while an evaluation from a student is less likely to be
uploaded. And an opinion from a student whose weight is
small is less likely to be trusted and we upload this judgment
to the database with a smaller probability. And thus all the
records uploaded to the Chronobot Database are reliable. In
this way, we transfer the weight of the profile to the
trustworthiness of a judgment from a specific profile.

After a few computation cycles, students can learn the skills of
n from the teacher and their weights will be increased so that
they can produce more reliable evaluations. And it is the same
as in the teacher-student relationship in the real life. As
students learn from the teacher, the students will have gain the
same power as the teacher. Once we make an assumption that
the teacher’s evaluations are always correct which means the
teacher acts as an Oracle, the whole system will converge to a
self-learning system and every profile in the system will be
knowledgeable about the evaluation. And as the system
improves, the evaluations will become more objective.

One important assumption we made in this model is that we
restrict the number of profiles to be a small number, usually
less than 10. A person is not likely to have a large number of
friends that he can trust to evaluate his state of health. Since a
small size group is easier to manipulate, this assumption
makes the Teacher Student Model more robust.

8. Experimental Results for Teacher Student Model

In order to prove that the Teacher Student Model will
converge to a stable status, we set up the following offline
experiment. There are 7 members in the group including a
teacher while the rest of the members are students. Teacher
owns the weight of 1 which means every evaluation originated
by the teacher is for sure reliable. On the other hand, students
owns weights = 0.3 which means 3 in 10 evaluations
originated by a student are correct and the rest are false. And
with the hops forward, students can learn from the teacher and
to gain the skill of judging correctly. If a student generates an
evaluation that matches the teacher’s evaluation, we increase
his/her weights by a small value. And if he/she made a mistake,
we decrease his/her weights in making evaluation. Thus only
the weight changes in students worth tracing because the
teacher is assumed to always generate correct evaluations. In
other words in this Teacher Student Model, teacher acts as an
Oracle and all the evaluations by the teacher are assumed to be
correct.

Before starting the experiment, we create an evaluations pool
where all the evaluations come from the teacher. The
evaluations originated by students will be compared with those
in the evaluations pool.

The experimental results show that as the hops (cycles) go on,
the weights of each student increase steadily and all converge
to 1 at the 14th hop. It successfully simulates the learning steps
in real life. As the students learn from the teacher, they will
gain the ability to evaluate state of health that the teacher has.

Figure 11. Experimental results.

In order to show how the learning converges, we did the
following experiments: Three users, user0, user2 and user4 are
incorporated in this experiment. User0 acts as the master in the
group which means every made by user0 is set to be the
standard. User2 act as a student and he should learn from the
master how to make evaluations. Once user2 made an
evaluation which is similar to the master, the reliability of
user2 should be increased. Weight of user2 is the measurement
of his/her reliability. Theoretically, as time goes by and user2
keeps on learning from the master, the weight of user2 should
converge to 100 which is the same as the master. The last user
incorporated in the experiment is user4, who is a patient. Both
users0 and user2 make evaluations about user4. If the
evaluation from user2 is similar to that of user0, we expect to
see that the weight of user2 increases. The initial weight of
user2 is set to 73. The master first made evaluations about
user4 and the scores are (5, 5, 5, 5, 5), and the student later
made an evaluation (5, 5, 5, 4, 5) about user4. We checked
back the weight of user2, it increased to 74. This showed the
ability of convergence of the Social Network Model in TDR
system.

9. Discussion

One of our main goals is to expand the TDR system for the
computation of Chi (also spelled as Qi in Chinese
transliteration system HanYu PinYin). The Chi super-
component is regarded as at a higher level. It has attributes
including both objective measurements and subjective

126

evaluations [4]. This makes the Chi super-component both
pro-active and adaptive at multiple levels.

The dashboard for TDR system can be further refined. When
user clicks on “view details” for the Chi super-component, a
list of attributes for Chi is shown. The objective
measurements in this list is filled by the multi-level
computation cycles based upon actual measurements. The
subjective evaluations are entered by the principal user
himself/herself based upon his/her subjective feelings, or
his/her friends, teachers and a master with deep knowledge.

The convergence of the opinion shows that a steady opinion of
the group is met which means the solution set is achieved
under the three assumptions. The Teacher Student model
successfully resolves the peer evaluation problem in TDR
system and can play an important role in future generations of
the TDR system. In the future, we plan to adjust the model to
having more than one teacher, so that user can learn both from
the master and from other teachers or selected friends.

References:

[1] Shi-Kuo Chang, JunHui Chen, Wei Gao and Qui Zhang ,
“TDR System - A Multi-Level Slow Intelligence System for
Personal Health Care”, Proceedings of 2016 International
Conference on Software Engineering and Knowledge
Engineering, Hotel Sofitel, Redwood City, USA, July 1-3,
2016, 183-190.

[2] Shi-Kuo Chang, "A General Framework for Slow
Intelligence Systems", International Journal of Software
Engineering and Knowledge Engineering, Volume 20,
Number 1, February 2010, 1-16.

[3] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N.
Puttaswamy, Ben Y. Zhao, User interactions in social
networks and their implications, Proceedings of the 4th ACM
European conference on Computer systems, April 01-03, 2009,
Nuremberg, Germany.

[4] Ming-Feng Chen, Hsi-Ming Yu, Shu-Fang Li and Ta-Jung
You, “A Complementary Method for Detecting Qi Vacuity”,
BMC complementary and alternative medicine, Vol. 9, No. 12,
2009.

Appendix: Data Analysis and Similarity Retrieval

A slow intelligence system SIS includes many kinds of
original data from Tian, Di, Ren and Chi sub-systems. In the
TDR system, those data are used to judge a person’s heath
status. Two important functions provided by the TRD system
are data analysis and similarity retrieval. In data analysis, data
will be analyzed so that alert conditions are detected. In
similarity retrieval, data records similar to the current data
record are found.

1. Data Analysis

The Analyze Model is specified by:(V, V1, V2, V3, VT, VF,
VP, VS, VW), where

V is final result, which may be “Normal”, ”Abnormal”
or ”N/A”,

V1 is the result of Chi, which may be is
“Normal”, ”Abnormal” or ”N/A”,

V2 is the result of bloodpresure, which may be is
“Normal”, ”Abnormal” or ”N/A”,

V3 is the result of SPO2, which may be is
“Normal”, ”Abnormal” or ”N/A”,

VT is the result of Tongue,
VF is the result of Tongue,
VP is the result of Tongue,
VS is the result of Tongue,
VW is the result of Tongue,
VT, VF, VP, VS, VW have the same value range: 0, 1, 2, 3

or 4.

Where Dia is test result for low pressure, and Sys is for

high pressure.
RegularLow and RegulaHigh has a definition as following

table.

V=V1&V2&V3, where ‘&’ is operator, which is defined

as follows.
“Normal” & ” Normal”=” Normal”
“Normal” & ”Abnormal”=”Abnormal”
“Normal” & ”N/A”=“Normal”
”Abnormal” & ”Abnormal”=”Abnormal”

127

”Abnormal” & ”N/A”=”Abnormal”
”N/A” & ”N/A”=”N/A”

The Data Analysis Algorithm is as follows:

ΰ1α Get records from database according to received

message,
ΰ2α Get information which includes VTΕVFΕVPΕVSΕ

VWΕbloodpresureΕSPO2 from all records of the day,
ΰ3α If can’t get enough information at last step, get latest

information from the week,
ΰ4α After finished the (3) step, records for some test

items still does not exist, those items should be ignore
when computing final result.

ΰ5α If there is not any test record in the database, the
result is defined as N/A, and insert it into the database,
end of algorithm,

ΰ6α According to the formula V=V1&V2&V3, we can get
the result(“Normal” or “Abnormal”) and insert into the
database, end of algorithm.

2. Similarity Retrieval

This function will retrieve other users’ records, and find out
few records that most similar to the current user’s records.
This is helpful for user or doctor to make a comparison to
enhance his/her understanding of their own situation. For
example, if your record is similar to a patient in the last few
days, you would better to be aware of your own health
condition. In contrast, if your record is similar to a healthy
people, it gains your confidence of your health condition.

The reason why nearest neighbor algorithm is suitable for this
system. One of the reason is, there is almost no assumptions
about the data, the only assumptions implied by distance
function. In addition, this algorithm is a non-parametric
approach, which is mean the data will tell us everything and
the system do not need to have any prior knowledge about the
data. Although, nearest neighbor algorithm seems fit the
system perfectly, it has 2 main disadvantages. One is the
algorithm sensitive to irrelevant attributes, also known as
dimension curse. Which is mean, high dimension data makes
the distance meaningless. Fortunately, the data in the system is
5-dimension data, thus the system do not have this problem.
Another disadvantage is the algorithm is computationally
expensive, either space wise and time wise. For space wise,
the algorithm need to store all examples. However, the system
has to keep all the records anyway, therefore, this is not a
problem for the system. For time wise, the system has to
compute distance to all records with time complexity ,
where n is number of existing records, d is cost of computing
distance. It is easy to know that, with increasing of n, the
system will become slower. The solution in this system is, it
only uses recent data so that to control the total number of
records involve in the calculation. Due to property of slow
intelligence system, data were collected continuously in each
cycle, thus missing data will appear in the records. To deal
with missing data, the system just simply ignores the
incomplete records. To sum up, the nearest neighbor algorithm
is one of the most suitable for this system.

To find out similar records, the system uses a simplified K
Nearest Neighbor algorithm. The system treats each record as
a 5 dimensions’ data. The dimensions are Chi factors defined
in the system, they are sweaty, pulse, weakBreath, fatigue, and
tongue. Each dimension represented by an integer from 1 to 5,
that is the score for a specific Chi factor.

After the system retrieve all others records, it calculates the L2
distance (Euclidean distance) between current user’s record
and each other’s records using

where c is current user’s record, o is one of other’s record, s is
score of sweaty, p is score of pulse, w is score of weakBreath,
f is score of fatigue, and t is score of tongue.

When the system knows the distances between current user’s
record and others’ records, it can find out the most similar
records easily by looking at the distances. Since find similar
function do not need to perform any further prediction among
current data, thus this can be the end of the nearest neighbor
algorithm.

128

