An Attempt to Realize Unified Memory Extending GPGPU-Sim

Debashis Ganguly, Mohammad Hasanzadeh Mofrad
Department of Computer Science
School of Computing and Information
University of Pittsburgh
Pittsburgh, USA
Email: {debahis, hasanzadeh}@cs.pitt.edu

Abstract—The current GPGPU-Sim is fully functional with
CUDA 4.0. It is a complete functional and timing simulator
publicly available. During the course of this project, we
came across multiple simulators, extending GPGPU-Sim, which
demand to achieve one or the other theoretical concepts. From
our detailed investigation, we realized that all of them miss
either functional or timing simulation aspect of a simulator.
Thus, we felt the need of extending GPGPU-Sim to realize
Unified Memory both functionally and from timing simulation
perspective.

Keywords-GPGPU, on-demand paging, unified memory

I. INTRODUCTION

General-purpose computing workloads such as MapRe-
duce [1], Graph Processing [2], and Deep Learning [3], [4]
on Graphics Processing Units (GPUs) are seeing increas-
ingly wide use. As a result, GPUs have been widely adopted
in HPC-clusters [5] and cloud-based data centers [6]. This is
because GPUs exploit thread-level parallelism (TLP) with its
massive number of simple compute cores that even multiple
CPUs can not offer due to the specialization in each chip.

While CPUs traditionally rely on caches and low-latency
memory systems to improve performance of single-threaded
execution, GPUs rely on multi-threading to hide memory
latency and guarantee high throughput of heterogeneous
compute workloads. However, in both discrete and integrated
CPU-GPU systems, there are high overheads associated with
kernel launch, memory management, and synchronization.
Developers are more concerned with optimizing the execu-
tion of general purpose kernels offloaded from host CPU
to the neighboring GPUs as these kernels typically belong
to large, highly parallel, and throughput oriented workloads.
Thus, traditionally, it was application programmers’ respon-
sibility to explicitly migrate data from host to guest memory
and also take care of memory over-subscription. In the recent
years, NVIDIA Pascal GPUs [7], with the support of CUDA
8.0, [8], truly enables Unified Memory where pages are
transparently migrated from host memory to device memory
on-demand. With on-demand paging, GPU is not left idle
and can begin execution even before the complete dataset
is copied to the local memory. However, this improved
programmability comes at the cost of performance [9], [10].
With on-demand paging, the kernel execution incorporates

0s Command GPU / SM
: TB Scheduler ‘ /|
) | | Decode]
s . SIMT Stack
cpu = ! i i
Q ‘ Interconnection | Warp Registers
m | Scheduler
z \ Warp Shared
z N \| || Scheduler Memory
[=}
War Memory
< Device Memory I\ "

\ | [Scheduler Unit
Warp
V| Scheduler

L1
Cache

Figure 1. System Overview

the latency of individual page transfer on every page-fault
[11]. Further, during this transfer, GPU cores grouped as
Streaming Multi-processors (SMs) stall [12]. To address this,
several works [12], [13] tried to overlap between kernel exe-
cution and page-fetching. Hence, there is an increasing trend
to outweigh page-fetch latency by executing more long-
running kernels or in other words saturate GPU compute
units. Naturally, this necessitates sharing GPUs by multiple-
kernels [14] to achieve better resource utilization, overall
throughput [15], and power efficiency [16].

This report lists out our current achievements towards re-
alizing Unified Memory extending GPGPU-Sim. Although,
the project goal is not fully realized due to limited back-
ground knowledge and timing constraints, we take pride in
presenting our framework for demand-aging and also the
insights, gained over the course of time, to integrate the
framework to realize a fully functional timing simulator.

II. BACKGROUND

In this section, we describe the architecture, execution
model, and the memory management of a GPU. We use
NVIDIA CUDA terminology, but the concepts can also be
applied to the other GPU vendors and runtimes.

A. GPU Architecture

Figure 1 shows an overview discrete CPU/GPU system
architecture where the subsytems are connected through
PCle bus. A GPU consists of a massive number of simple
compute cores grouped into SMs. The SM is the main
execution unit which performs as a compute unit as a

whole. Each SM has additional resources such as registers,
shared memory, and L1 cache to enable computing on the
set of cores. Each discrete GPU chip has its own local
GDDR5 memory. SMs share this device memory through
an interconnection network. Memory requests are distributed
to the memory controllers according to requested address.
Each memory controller has its own L2 cache. All these L2
cache together give an illusion of unified last level cache to
the SMs.

B. GPU Execution Model

Traditionally, a GPU program has two components: a host
code and a device code, also known as GPU kernel. Kernels
are Single Instruction Multiple Threads (SIMT) programs
where programmer writes code for one thread, and the GPU
generates user specified number of threads to execute the
same code. Threads are grouped in Thread Blocks (TBs),
which are dispatched to the GPU one at a time. Once a
TB is dispatched to an SM, its threads are batched into
warps by the hardware, 32 at a time also known as SIMD
width of the GPU. An SM has one or more warp schedulers,
andthe warps are distributed equally to them. The schedulers
select instructions from the ready warps to keep the pipeline
busy. This is because warps can be stalled due to long
latency operations. The main objective of GPU is to hide
long memory latency by exploiting massive thread-level
parallelism (TLP).

GPUs are typically treated as co-processors or slave
devices to the host CPU. Thus, GPUs are initialized and
controlled by the designated runtime, like CUDA, resident
to the Operating System running on the CPU.

C. GPU Memory Management

In both discrete and integrated CPU/GPU systems, the
host or CPU memory and the device or GPU memory can be
either laid out as either partitioned address space or unified
address space. In pre-Pascal GPUs, partitioned address space
are prevalent. Kernels can only reference data physically
residing on the local GDDRS memory. Thus, commonly,
application programmers explicitly copy data up front from
host to device memory and then launch kernels to operate
on that data. Further, upon completion of kernel execution,
the results need to be copied back from device to host
memory. As a result, memory copy and kernel execution
are serialized.

However, with the introduction of paged memory, this
restriction is relaxed. Unified Memory allows greater pro-
grammability upon providing a single memory space directly
accessible by all GPUs and CPUs in the system, with auto-
matic page migration for data locality [17]. NVIDIA Pascal
GPU architecture [7] comes with larger virtual memory
address space and Page Migration Engine, enabling true
virtual memory demand paging. On Pascal and later GPUs,
cudaMallocManaged API of CUDA 8 [8] returns a pointer

to a memory, accessible to both CPU and GPU, which may
not be physically allocated. Pages and page table entries are
populated on-demand as accessed by the GPU or the CPU.
As a result, kernels do not need to wait for the whole dataset
to be copied over, and can start execution as soon as the first
referred page is accessible.

III. EXTENDING GPGPU-SiM FOR CUDA 8.0

The stable release of GPGPU-Sim, released in 2009,
currently works with CUDA 4.2 and gcc/g++ 4.4. One
of the achievement of this project is to make the
compilation of GPGPU-Sim possible with CUDA 8.0
and gcc/g++ 5.2 released in 2017. To achieve this,
we used the dev branch of GPGGPU-Sim and made
some changes in its Makefile, Config files, and
Environment files. Also, GPGPU-Sim is highly de-
pendant on the NVIDIA_GPU_COMPUTING_SDK belong-
ing to CUDA 4.2 and not compatible with the newer versions
of CUDA toolkit. We extened GPGPU-Sim such that it
points to CUDA 8.0 and generates pt x executable on Pascal
micro-architecture with CUDA 8.0.

IV. NEw APIS FOR UNIFIED MEMORY

In this project, we implemented the hooks for
two CUDA APIs cudaMallocManaged and
cudaMemPrefetchAsync. These two APIs are
originally introduced in CUDA 7 with the purpose of
realizing Unified Memory. However, NVIDIA makes
them fully functional with the introduction of CUDA 8§
and Pascal micro-architecture. The new methods enable
on-demand paging across a unified space of memory.
The stubs are implemented without any side effect during
compilation of the GPGPU-Sim and the sample CUDA
programs. Moreover, the GPGPU-Sim does not implement
cudaFree APIL We also implemented this API to make it
compatible with Unified Memory implementation.

V. FRAMEWORK FOR ON-DEMAND PAGING

GPGPU-Sim currently does not support Unified Memory.
Before introduction of UVM, an user application had to
initialize data sets on both CPU and GPU memory using
malloc and cudaMalloc respectively. Then, user had to
explicitly copy data between these two memory addresses
using cudaMemcpy. Unified Memory removes the redundant
declaration of two pieces of memory on both CPU and
GPU and thus invariably removes the need to copy data
between them. With cudaMallocManaged, the program gets
a virtual address of an allocation that is addressable by
both CPU and GPU. The first challenge, we faced while
implementing UVM, is to allocate memory and return virtual
address to the same which can be accessed by both CPU and
GPU. For that we introduced a new data-structure called
Managed_Page that represents a page in UVM allocated by
cudaMallocManaged. It encompasses few major members,

namely (i) base address to the page, (ii) a bit to represent
whether the page is valid in GPU or not, (iii) a dirty bit
to denote whether the content of the page requires write-
back to CPU, and (iv) a counter for least-recently-used
policy. The second data-structure introduced is called Man-
aged_Allocation. It represents a cudaMallocManaged allo-
cation or list of Managed_Page. It has - (i) base address to
the allocation, (iii) total size of the allocations in bytes, and
(iii) a dictionary of Managed_Page keyed by base address of
each page starting from the base address of the allocation.
The major component of UVM in our implementation is
GMMU which represents GPU Memory Management Unit
and is responsible for managed UVM allocations. It has
a dictionary of Managed_Allocation keyed by the base
address of the allocation per concurrent application. Thus,
this represents page table for each application on GPU side.

VI. FUTURE DIRECTIONS

Although, we could not finish implementing the On-
demand Paging, we found some sweat spots in the GPGPU-
Sim code-base which are promising for our future research.
We found out, the parser implementation of GPGPU-Sim
is the first place that the memory addresses are gener-
ated for an opcode. We think further investigation of
this component will help us find the memory addresses
used in ptx. Furthermore, the read and write meth-
ods under the memory_space_impl are called by in-
dividual instructions such as load, store, add, etc. The
memory_space_impl has a key-value data structure from
where it returns a storage data type corresponding to
a virtual address. The way GPGPU-Sim operated on this
class is cryptic and unknown to us at this moment. Hence,
further investigation on this implementation will also help us
crack the GPGPU-Sim and find how to attach the read and
write methods to our Unified Memory implementation. We
also need to emulate page fault for first access to a managed
page, stalling warp threads waiting on far-faults, coalescing
memory accesses on PCI-E, pre-fetching of pages and page
eviction under oversubscription.

REFERENCES

[1] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. ACM, 2008, pp.
260-269.

[2] J. Zhong and B. He, “Medusa: Simplified graph processing
on gpus,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1543-1552, 2014.

[3] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li,
T. Mudge, R. G. Dreslinski, J. Mars, and L. Tang, “Djinn
and tonic: Dnn as a service and its implications for future
warehouse scale computers,” in ACM SIGARCH Computer
Architecture News, vol. 43, no. 3. ACM, 2015, pp. 27-40.

[4] M. Wang, T. Xiao, J. Li, J. Zhang, C. Hong, and Z. Zhang,
“Minerva: A scalable and highly efficient training platform
for deep learning,” in NIPS Workshop, Distributed Machine
Learning and Matrix Computations, 2014.

[5] Z. Fan, E Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu
cluster for high performance computing,” in Supercomputing,
2004. Proceedings of the ACM/IEEE SC2004 Conference.
IEEE, 2004, pp. 47-47.

[6] A. Herrera, “Nvidia grid: Graphics accelerated vdi with the
visual performance of a workstation,” Nvidia Corp, 2014.

[7] “Whitepaper: NVIDIA Tesla P100,”
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf, 2016, [Online; accessed 04-Dec-
2017].

[8] “CUDA RUNTIME API: API Reference Manual,”
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf,
July, 2017, [Online; accessed 04-Dec-2017].

[9] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt,
“An investigation of unified memory access performance in
cuda,” in High Performance Extreme Computing Conference
(HPEC), 2014 IEEE. IEEE, 2014, pp. 1-6.

[10] M. Dashti and A. Fedorova, “Analyzing memory management
methods on integrated cpu-gpu systems,” in Proceedings
of the 2017 ACM SIGPLAN International Symposium on
Memory Management. ACM, 2017, pp. 59-69.

[11] M. Harris, “Unified Memory for CUDA Beginners,”
https://devblogs.nvidia.com/parallelforall/unified-memory-
cuda-beginners/, June, 2017, [Online; accessed 04-Dec-2017].

[12] T. Zheng, D. Nellans, A. Zulfigar, M. Stephenson, and
S. W. Keckler, “Towards high performance paged memory for
gpus,” in High Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on. 1EEE, 2016, pp.
345-357.

[13] D. Lustig and M. Martonosi, “Reducing gpu offload latency
via fine-grained cpu-gpu synchronization,” in High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on. 1EEE, 2013, pp. 354-365.

[14] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Im-
proving gpgpu concurrency with elastic kernels,” in ACM
SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 407-
418.

[15] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo, “Simultaneous multikernel gpu: Multi-tasking
throughput processors via fine-grained sharing,” in High
Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on. 1EEE, 2016, pp. 358-369.

[16] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective
method for better power efficiency on multithreaded gpu,”
in Proceedings of the 2010 IEEE/ACM Int’l Conference on
Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing. 1EEE Computer
Society, 2010, pp. 344-350.

[17] N. Sakharnykh, “Beyond GPU Memory
Limits with Unified Memory on Pascal,”
https://devblogs.nvidia.com/parallelforall/beyond-gpu-
memory-limits-unified-memory-pascal/, December, 2016,
[Online; accessed 04-Dec-2017].

