
1 

 

CS 2710 Fall 2015 (Foundations of Artificial Intelligence) 

Assignment 4: A Planning System 

Mohammad Hasanzadeh Mofrad (hasanzadeh@cs.pitt.edu) 
 

1 Introduction 

A Partial Order Planning (POP) algorithms tries to automate planning that leaves decisions about 

the ordering of actions as open as possible. A Partial order plan consists of the following 

components: 

Steps: A set of steps or actions that we plan to take.  

Ordering constraints: A set of ordering constraints that say which steps have to be before which 

other ones. 

Variable binding constraints: A set of variable ordering constraints that say which variables are 

equal to which other variables or constants.  

Casual links: A set of links that say which effect of actions is going to satisfy which preconditions 

of other actions.  

In this report, we are going to build a planning system for two simple problems in the context of 

propositional representation using the above description. 

2 Proposed Planning System 

In this section, the changes to the assign4code.py will be introduced. Since the assignment 

description asks for relevant changes to the code, each section comes with its corresponding code 

snippet with an example showing that the code is capable of doing a specific task. 

2.1 Goal Test 

The goal function checks threats and open conditions. If there exists a threat or open condition, the 

goal function returns false. If the is no threat and open condition, it return true.  

def goalp(node): 
  if not node.state.threats and not node.state.openconds: 
     return True 
  else: 
     return False 

 

2.2 Heuristic Function  

The heuristic function checks the number of threats and open conditions, and return them for 

further use. 

def h(node): 
  return (len(node.state.threats) + len(node.state.openconds)) 

 



2 

 

2.3 Successor Function 

As stated in the project description, the successor function receives a plan with some flaws and 

tries to resolve these flaws. Plan may include two types of flaws: open conditions and/or threats. 

In the following, we introduce the ways of eliminating these flaws and present their corresponding 

code snippets and traces.  

 

2.3.1 Resolving an open condition by using an existing step 

Let (C, X) be an open condition. The first way to solve an open condition (C, X) is to find some 

other step, S, already in the plan that makes the condition true i.e. S has C on its add list. The 

following code snippet belongs to this way of resolving open condition. 

 

      # Select the first open condition 

      selectedOC = plan.openconds[0] 

      for S in plan.steps: 

         if (selectedOC[0] in adds[S]) and (selectedOC[1] != S): 

             

            # Create successor node 

            successorNode = Plan(steps = list(plan.steps),\ 

                                 ordercons = list(plan.ordercons),\ 

                                 causallinks = list(plan.causallinks),\ 

                                 openconds = list(plan.openconds),\ 

                                 threats = list(plan.threats)) 

             

            # Create additional causal link 

            if not (S, selectedOC[0], selectedOC[1]) in successorNode.causallinks: 

               addCL = (S, selectedOC[0], selectedOC[1]) 

               successorNode.causallinks.append(addCL) 

                

            # Create additional ordering constraint 

            addOrC = (S,selectedOC[1]) 

            if orderConsistency(addOrC,successorNode.ordercons): 

               if not (S, selectedOC[1]) in successorNode.ordercons: 

                  successorNode.ordercons.append(addOrC) 

                

            #Check for new threats 

            for tS in successorNode.steps: 

               if (selectedOC[0] in deletes[tS]) and (tS != selectedOC[1]) and \ 

                        (not (selectedOC[1], tS) in successorNode.ordercons) and \ 

                        (not (tS, S) in successorNode.ordercons): 

                  if not ((S, selectedOC[0], selectedOC[1]), tS) in successorNode.threats: 

                     successorNode.threats.append(((S, selectedOC[0], selectedOC[1]), tS)) 

                      

            #remove open condition 

            successorNode.openconds.remove(selectedOC) 

            successorNode.comment = "Adding causal link with existing step\n" +\ 

                                    "    The new causal link is: " + str(addCL) +\ 

                                    "\n    Removing the open condition: " + str(selectedOC) +\ 

                                    "\n" 

            successor.append(successorNode) 

             

 

 

 



3 

 

Moreover, the following is a part of trace file showing how to resolve an open condition for plan 

6 using an existing steps: 

open conditions: 

    floor-dirty wash-floor 

    furniture-dusty dust 

    floor-dusty sweep 

threats: 

    (('sweep', 'floor-not-dusty', 'goal'), 'dust') 

    (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

plan6 ----- 

Adding causal link with existing step 

    The new causal link is: ('init', 'floor-dirty', 'wash-floor') 

    Removing the open condition: ('floor-dirty', 'wash-floor') 

 

steps: ['init', 'goal', 'wash-floor', 'dust', 'sweep'] 

causal links: 

    wash-floor < floor-clean < goal 

    dust < furniture-clean < goal 

    sweep < floor-not-dusty < goal 

    sweep < floor-not-dusty < wash-floor 

    init < floor-dirty < wash-floor 

ordering constraints (other than those with goal or init): 

    sweep < wash-floor 

open conditions: 

    furniture-dusty dust 

    floor-dusty sweep 

threats: 

    (('sweep', 'floor-not-dusty', 'goal'), 'dust') 

    (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

2.3.2 Resolving an open condition by inserting a new step 

Let (C, X) be an open condition. The second way to resolve achieve an open condition (C, X) is 

to find an operator that makes it true, and then insert a new step S representing that operator into 

the plan. The following code snippet belongs to this way of resolving open condition. 

 

      for newS in adds: 

         if (selectedOC[0] in adds[newS]) and (newS != selectedOC[1]): 

            if not newS in plan.steps: 

               successorNode = Plan(steps = list(plan.steps),\ 

                                    ordercons = list(plan.ordercons),\ 

                                    causallinks = list(plan.causallinks),\ 

                                    openconds = list(plan.openconds),\ 

                                    threats = list(plan.threats)) 

               # Inserting a new step 

               successorNode.steps.append(newS) 

                

               # Create additional causal link 

               addCL = (newS, selectedOC[0], selectedOC[1]) 

               successorNode.causallinks.append(addCL) 

                

               # Eliminate the open condition 

               successorNode.openconds.remove(selectedOC) 

                

               # Create additional ordering constraint 

               addOrC = (newS, selectedOC[1]) 

#                if (selectedOC[1]!='goal' and selectedOC[1]!='init') and \ 

               if orderConsistency(addOrC, successorNode.ordercons): 

                  successorNode.ordercons.append(addOrC) 

                   

              # add preconditions of the new step to the existing open conditions 

               for precondition in preconds[newS]: 

                  successorNode.openconds.append((precondition, newS)) 

                   

               #Check for new threats 

               for tS in successorNode.steps: 

                  if (selectedOC[0] in deletes[tS]) and (tS != selectedOC[1]) and \ 

                        (not (tS, newS) in successorNode.ordercons) and \ 

                        (not (selectedOC[1], tS) in successorNode.ordercons): 

                     if selectedOC[0] in deletes[tS]: 

                        successorNode.threats.append(((newS, selectedOC[0], selectedOC[1]), tS)) 

                

               for proposition in deletes[newS]: 

                  for causalLink in successorNode.causallinks: 

                     if (proposition in causalLink) and (not newS in causalLink): 

                        successorNode.threats.append((causalLink, newS)) 

                         

               successorNode.comment = "Adding new step " + newS +\ 

                                       "\n   The new causal link is: " + str(addCL) +\ 

                                       "\n   Removing the open condition: " + str(selectedOC) +\ 

                                       "\n" 

                   

               successor.append(successorNode) 

 

 

 

 

 

 



5 

 

Moreover, the following is a part of trace file showing how to resolve an open condition for plan 

4 by adding a new step: 

 

plan4 ----- 

Adding new step sweep 

   The new causal link is: ('sweep', 'floor-not-dusty', 'goal') 

   Removing the open condition: ('floor-not-dusty', 'goal') 

 

steps: ['init', 'goal', 'wash-floor', 'dust', 'sweep'] 

causal links: 

    wash-floor < floor-clean < goal 

    dust < furniture-clean < goal 

    sweep < floor-not-dusty < goal 

open conditions: 

    floor-not-dusty wash-floor 

    floor-dirty wash-floor 

    furniture-dusty dust 

    floor-dusty sweep 

threats: 

    (('sweep', 'floor-not-dusty', 'goal'), 'dust') 

 

 

2.3.3 Resolving a threat by demotion 

A threat can be viewed as having four components: a producer step, a consumer step, a condition, 

and a threatening step. While solving a threat by demotion, we add a new ordering constraint that 

requires the threatening step to precede the producer. The following is the code snippet for 

resolving threats by demotion. 

 

     selectedT = plan.threats[0] 
      successorNode = Plan(steps = list(plan.steps),\ 
                      ordercons = list(plan.ordercons),\ 
                      causallinks = list(plan.causallinks),\ 
                      openconds = list(plan.openconds),\ 
                      threats = list(plan.threats)) 
       
      # Demotion by adding a new ordering constraint 
      addOrC = (selectedT[1], selectedT[0][0]) 
      if orderConsistency(addOrC, successorNode.ordercons) and (len(plan.threats)>1): 
         if (not addOrC in successorNode.ordercons) and (addOrC[0] != addOrC[1]): 
            successorNode.ordercons.append(addOrC) 
         # Eliminate the resolved threat 
         successorNode.threats.remove(selectedT) 
         successorNode.comment = "Resolving threat by demotion: order constraints " +\ 
                                 str(addOrC) + "\n    Threat eliminated " +\ 
                                 str(selectedT) + "\n"  
 

 

 

 

 

 



6 

 

Moreover, the following is a part of trace file showing how to resolve a threat for plan 10 by using 

demotion: 

 

ordering constraints (other than those with goal or init): 

    sweep < wash-floor 

threats: 

    (('sweep', 'floor-not-dusty', 'goal'), 'dust') 

    (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

 

plan10 ----- 

Resolving threat by demotion: order constraints ('dust', 'sweep') 

    Threat eliminated (('sweep', 'floor-not-dusty', 'goal'), 'dust') 

 

steps: ['init', 'goal', 'wash-floor', 'dust', 'sweep'] 

causal links: 

    wash-floor < floor-clean < goal 

    dust < furniture-clean < goal 

    sweep < floor-not-dusty < goal 

    sweep < floor-not-dusty < wash-floor 

    init < floor-dirty < wash-floor 

    init < furniture-dusty < dust 

    init < floor-dusty < sweep 

ordering constraints (other than those with goal or init): 

    sweep < wash-floor 

    dust < sweep 

threats: 

    (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

 

2.3.4 Resolving a threat by promotion 

While solving a threat by promotion, we add a new ordering constraint that requires the consumer 

to precede the threatening step. The following is the code snippet for resolving threats. 

 

      else: 
         # Promotion by adding a new ordering constraint 
         addOrC = (selectedT[0][1], selectedT[1]) 
         if orderConsistency(addOrC, successorNode.ordercons): 
            if not addOrC in successorNode.ordercons and (addOrC[0] != addOrC[1]): 
               successorNode.ordercons.append(addOrC) 
            # Eliminate the resolved threat 
            successorNode.threats.remove(selectedT) 
            successorNode.comment = "Resolving threat by promotion: order constraints "+\ 
                                    str(addOrC) + "\n    Threat eliminated " +\ 
                                    str(selectedT)+ "\n" 
      successor.append(successorNode) 

 

 

Also, the following is a part of trace file showing how to resolve a threat for plan 12 by using 

promotion: 

 

 

 



7 

 

 

ordering constraints (other than those with goal or init): 

    sweep < wash-floor 

    dust < sweep 

threats: 

    (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

plan12 ----- 

Resolving threat by promotion: order constraints ('floor-not-dusty', 'dust') 

    Threat eliminated (('sweep', 'floor-not-dusty', 'wash-floor'), 'dust') 

 

steps: ['init', 'goal', 'wash-floor', 'dust', 'sweep'] 

causal links: 

    wash-floor < floor-clean < goal 

    dust < furniture-clean < goal 

    sweep < floor-not-dusty < goal 

    sweep < floor-not-dusty < wash-floor 

    init < floor-dirty < wash-floor 

    init < furniture-dusty < dust 

    init < floor-dusty < sweep 

ordering constraints (other than those with goal or init): 

    sweep < wash-floor 

    dust < sweep 

    floor-not-dusty < dust 

 

Note that, I added a late condition to enforce a specific circumstance for applying a promotion 

based on the length of the threat list (len(plan.threats)>1). Therefore, by removing this condition, 

the algorithm only uses demotion which is comes first in the code. Thus, in this case the final 

ordering constraints will be as follows: 

    sweep < wash-floor 

    dust < sweep 

 

2.4 Temporal Ordering Constraint Consistency  

A set of ordering constraints is consistent if three conditions hold: 

1. No step precedes step init. 

2. Step goal does not precede any step. 

3. No step Si precede itself in the transitive closure of the ordering constraints. 

The following is the code snippet regarding these constraints checks: 

 

def orderConsistency(addOrC,constraints): 

   # Verify the new  ordering constraint position 

   # No step preceds 'init' 

   # Step 'goal' does not preceds any step 

   steps=["init","goal"] 

   if addOrC[0] in steps or addOrC[1] in steps: 

      return False 

   else: 

      # Transitivity check 

      for closure in constraints: 

         if addOrC[0] == closure[1] and addOrC[1] == closure[0]: 

            return False 

      return True 
 



8 

 

3 Developing a new problem 

In this section we test the planning algorithm with a new problem which is hardcoded in 

assign4code.py. To run this test case use the following command: 

python3 assign4code.py 3 

 

The proposed problem tries to plan a banking solution for transferring money: 

1. A user want to login to the online banking system 

2. There is a step for checking the user name. 

3. There is another step for checking the password. 

4. After successful authentication, the user is logged in to the online banking system. 

5. The user could check its current balance or withdraw some money. 

6. Finally, the user will logout from the system.  

7. The goal is to login to system and withdraw 100 bucks and then logout. 

 

3.1 Resolving an open condition by using an existing step 

The following is an example of solving an open conditions by using an existing step: 

 

plan8 ----- 

Adding causal link with existing step 

    The new causal link is: ('init', 'unknown-balance', 'current-balance') 

    Removing the open condition: ('unknown-balance', 'current-balance') 

 

steps: ['init', 'goal', 'login', 'current-balance', 'withdraw', 'logout', 'enter-username', 

'enter-password'] 

causal links: 

    login < successful-login < goal 

    current-balance < sufficient-balance < goal 

    withdraw < withdraw-100-bucks < goal 

    logout < not-login < goal 

    enter-username < valid-username < login 

    enter-password < valid-password < login 

    init < unknown-balance < current-balance 

ordering constraints (other than those with goal or init): 

    enter-username < login 

    enter-password < login 

open conditions: 

    successful-login withdraw 

    unknown-balance withdraw 

    successful-login logout 

    blank-username enter-username 

    valid-username enter-password 

    blank-password enter-password 

threats: 

    (('current-balance', 'sufficient-balance', 'goal'), 'withdraw') 

    (('logout', 'not-login', 'goal'), 'login') 

 

 

 



9 

 

3.2 Resolving an open condition by inserting a new step 

The following is an example of solving an open conditions by adding a new step: 

plan7 ----- 

Adding new step enter-password 

   The new causal link is: ('enter-password', 'valid-password', 'login') 

   Removing the open condition: ('valid-password', 'login') 

 

steps: ['init', 'goal', 'login', 'current-balance', 'withdraw', 'logout', 'enter-username', 

'enter-password'] 

causal links: 

    login < successful-login < goal 

    current-balance < sufficient-balance < goal 

    withdraw < withdraw-100-bucks < goal 

    logout < not-login < goal 

    enter-username < valid-username < login 

    enter-password < valid-password < login 

ordering constraints (other than those with goal or init): 

    enter-username < login 

    enter-password < login 

open conditions: 

    unknown-balance current-balance 

    successful-login withdraw 

    unknown-balance withdraw 

    successful-login logout 

    blank-username enter-username 

    valid-username enter-password 

3.3 Resolving a threat by demotion 

Since asking for the current balance is independent of withdrawing money, there is a flaw between 

withdrawing money and query about current balance. The following shows that how the algorithm 

resolve this threat.  

threats: 

    (('current-balance', 'sufficient-balance', 'goal'), 'withdraw') 

    (('logout', 'not-login', 'goal'), 'login') 

 

plan15 ----- 

Resolving threat by demotion: order constraints ('withdraw', 'current-balance') 

    Threat eliminated (('current-balance', 'sufficient-balance', 'goal'), 'withdraw') 

 

steps: ['init', 'goal', 'login', 'current-balance', 'withdraw', 'logout', 'enter-username', 

'enter-password'] 

causal links: 

    login < successful-login < goal 

    current-balance < sufficient-balance < goal 

    withdraw < withdraw-100-bucks < goal 

    logout < not-login < goal 

    enter-username < valid-username < login 

    enter-password < valid-password < login 

    init < unknown-balance < current-balance 

    login < successful-login < withdraw 

    init < unknown-balance < withdraw 

    login < successful-login < logout 

    init < blank-username < enter-username 

    enter-username < valid-username < enter-password 

    init < blank-password < enter-password 

ordering constraints (other than those with goal or init): 

    enter-username < login 

    enter-password < login 

    login < withdraw 

    login < logout 

    enter-username < enter-password 

    withdraw < current-balance 

threats: 

    (('logout', 'not-login', 'goal'), 'login') 



10 

 

3.3 Resolving a threat by promotion 

The logout action, adds the not-login to the plan, which is among the goals. Also, not-login is a 

deleted by login before. Thus, there is a threat here. The following shows that how the algorithm 

resolve this threat by promotion.  

threats: 

    (('logout', 'not-login', 'goal'), 'login') 

 

plan16 ----- 

Resolving threat by promotion: order constraints ('not-login', 'login') 

    Threat eliminated (('logout', 'not-login', 'goal'), 'login') 

 

steps: ['init', 'goal', 'login', 'current-balance', 'withdraw', 'logout', 'enter-username', 

'enter-password'] 

causal links: 

    login < successful-login < goal 

    current-balance < sufficient-balance < goal 

    withdraw < withdraw-100-bucks < goal 

    logout < not-login < goal 

    enter-username < valid-username < login 

    enter-password < valid-password < login 

    init < unknown-balance < current-balance 

    login < successful-login < withdraw 

    init < unknown-balance < withdraw 

    login < successful-login < logout 

    init < blank-username < enter-username 

    enter-username < valid-username < enter-password 

    init < blank-password < enter-password 

ordering constraints (other than those with goal or init): 

    enter-username < login 

    enter-password < login 

    login < withdraw 

    login < logout 

    enter-username < enter-password 

    withdraw < current-balance 

    not-login < login 

 


