
CS 1550: Introduction to Operating 
Systems

Recitation 4: InterProcess
Communication (IPC)

Mohammad Hasanzadeh Mofrad

University of Pittsburgh

1moh18@pitt.edu
9/16/2019

mailto:hasanzadeh@cs.pitt.edu


Process Synchronization

Abraham Silberschatz - Operating System Concepts 9th 2012 2

• Inter-Process Communication (IPC) refers to the mechanisms that 
allows processes to work on shared data e.g. client and server 
architecture where client requests data and the server responds to 
client requests.

• Motivations
• Cooperating processes share a logical address space

• Avoiding inconsistency while having many concurrent data access

• In massively parallel algorithms, a process may be interrupted at any point

• Enable multithreading while having multiple cores



Producer/consumer example

• Producer – consumer problem (bounded-buffer problem) is a classic 
example of multi-process synchronization problem which consists of:
• A fixed-size buffer used as a queue.

• A producer which generates data and put it into the buffer.

• A consumer which consumes data and remove it from the buffer

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem 3



Producer/consumer example

/* Producer */

/* produce an item in 

next_produced */

while (true) 

{

while (counter == BUFFER SIZE)

;  /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER SIZE;

counter++;

}

/* Consumer */

/* consume the item in 

next_consumed */

while (true)

{

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

counter--;

}

Abraham Silberschatz - Operating System Concepts 9th 2012 4

Counter = 5

Counter = {4, 5, or 6}

R1 = counter
R1 = R1 + 1 

counter = R1

R2 = counter
R2 = R2 – 1 

counter = R2



Example (counter = 5)

/* Producer */

R1 = counter (R1 = 5)

R1 = R1 + 1  (R1 = 6)

Φ

Φ

counter = R1 (counter = 6)

Φ

/* Consumer */

Φ

Φ

R2 = counter (R2 = 5)

R2 = R2 – 1  (R2 = 4)

Φ

counter = R2 (counter = 4)

counter = 4

Abraham Silberschatz - Operating System Concepts 9th 2012 5



Example (counter = 5)

/* Producer */

R1 = counter (R1 = 5)

R1 = R1 + 1     (R1 = 6)

Φ

Φ

Φ

counter = R1 (counter = 6)

counter = 6

/* Consumer */

Φ

Φ

R2 = counter (R2 = 5)

R2 = R2 – 1     (R2 = 4)

counter = R2 (counter = 4)

Φ

Abraham Silberschatz - Operating System Concepts 9th 2012 6



Example (counter = 5)

/* Producer */

R1 = counter (R1 = 5)

R1 = R1 + 1     (R1 = 6)

counter = R1 (counter = 6)

Φ

Φ

Φ

/* Consumer */

Φ

Φ

Φ

R2 = counter (R2 = 6)

R2 = R2 – 1     (R2 = 5)

counter = R2 (counter = 5)

counter = 5

Abraham Silberschatz - Operating System Concepts 9th 2012 7



Critical Section Problem

/* Typical control flow for a 
process pi */

do

{

entry section 

critical section

exit section

non critical section

}

while (TRUE)

• Concurrent accesses to a shared 
resource can lead to an 
unexpected behavior. So, the 
part of the program which is 
accessed concurrently is 
protected. This protected 
section is called Critical Section.

• N processes: P = {p0, p1, …, pn}
• Change a variable

• Update a table

• Write to a file

Abraham Silberschatz - Operating System Concepts 9th 2012 8



Solution Requirements for Critical Section

Abraham Silberschatz - Operating System Concepts 9th 2012 9

• Mutual Exclusion
• Only pi can be in it’s critical section at a given point of time

• Progress
• If the critical section is empty, processes must be able to enter it

• Bounded waiting
• No process should wait forever to enter it’s critical region

• How OS handles critical section
• Non-preemtive kernels

• Free from race conditions
• Starvation problem

• Preemptive kernels
• Difficult to design
• More responsive

• Hardware based solutions



Peterson’s Solution

/* Process pi in Peterson’s solution*/

int turn;

boolean flag[2];

do {

flag[i] = true

turn = j

while (flag[j] && turn == j) 

; /* do nothing */

critical section

flag[i] = false;

non critical section

}

while (TRUE)

• A classic software-based 
solution which is working

• Restricted to 2 processes 
working on their critical sections
• j = 1 - i

• turn indicates whose turn is it?

• flag indicates a process is 
ready to enter it’s critical region 
or not

Abraham Silberschatz - Operating System Concepts 9th 2012 10



Proving CS Requirements for PS

/* P0 */

do {

flag[0] = true

turn = 1

while (flag[1] && turn == 1) 

; /* do nothing */

critical section

flag[0] = false;

non critical section

}

while (TRUE)

/* P1 */

do {

flag[1] = true

turn = 0

while (flag[0] && turn == 0) 

; /* do nothing */

critical section

flag[1] = false;

non critical section

}

while (TRUE)

Abraham Silberschatz - Operating System Concepts 9th 2012 11

1
1

1. Mutual Exclusion

2. Bounded Waiting

3. Progress

3
3

2
2



MUTEX (MUTual EXclusion) 

Abraham Silberschatz - Operating System Concepts 9th 2012 12

• Race condition: A race condition is an undesirable condition that 
happened when having multiple processes running on a piece of data 
which does not use any exclusive locks to control access.

• A MUTEX is a LOCK for CRITICAL SECTION and thus prevents RACE 
CONDITION

• Mutexes are the simplest synchronization tools in the operating 
system



MUTEX

/* Typical control flow for mutex
locks */

do

{

acquire() lock

critical section

release() lock

non critical section

}

while (TRUE)

acquire()

{

while (!available)

; /* busy wait */

available = false;

}

release()

{

available = true;

}

Abraham Silberschatz - Operating System Concepts 9th 2012 13



MUTEX

Abraham Silberschatz - Operating System Concepts 9th 2012 14

+ Atomicity: Implemented using hardware mechanisms

test and set() instruction 

compare and swap() instruction 

- Busy waiting: process spins while waiting for the lock spinlock



SEMAPHORE

/* semaphore(s) */

up(s)

{

s++;

}

down(s)

{

while (s <= 0)

; /* busy wait */

s--;

}

• A classic software-based solution which is 
working

• A more sophisticated mutex lock

• All modifications to semaphore must be 
indivisible

• No 2 processes can modify a semaphore 
simultaneously

• Counting / binary semaphores

Abraham Silberschatz - Operating System Concepts 9th 2012 15



Semaphore with blocking

CS1550 – IPC slides 16



Producer/Consumer with semaphores

CS1550 – IPC slides 17


