
Hello Edge: Keyword Spotting on Microcontrollers
Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra
ARM Research, Stanford University
arXiv.org, 2017

Presented by Mohammad Mofrad
University of Pittsburgh
March 20, 2018

Problem Statement

• Speech in increasingly becoming a natural way to interact with electronic
devices:
• Amazon echo

• Google home

• Smart homes

• Keyword Spotting (KWS) is the process of detecting commonly known
keywords. Example of KWS is “Alexa”, “Ok Google”, and “Hey Siri”

• In smart speakers Keyword Spotting (KWS) is used to:
• Save energy

• Avoid Cloud latency

2

Contribution

• Train a neural network for
running Keyword Spotting on
resource-constrained
microcontrollers
• 1st constraint: Limited memory

footprint

• 2nd constraint: Limited processing
power

• Optimize the neural network for
these constraints without
sacrificing accuracy

• And meet low latency requirement

3

Keyword Spotting (KWC)

4

T = (L – l / s) + 1 frames
Signal of length L
Overlapping frames of length l
Stride s

T x F features
using Log-mel filter bank
energies (LFBE)
and Mel-frequency Cepstral
Coefficients (MFCC)

Speech feature matrix
is fed to a classifier which
generates the probability of
output classes

Microcontroller Systems

• Microcontroller
• Processor core

• On-chip SRAM

• On-chip embedded flash

• ARM MbedTM platform
• Processor: Cortex-M0  Cortex M7

• Frequency: 48 MHz  216 MHz

• SRAM: 8 KB  320 KB

• Flash: 32 KB  1MB

• Mostly, microprocessors are designed for low cost and energy efficient applications.

• Integrated DSPs and SIMD and MAC instructions can accelerate neural network
computations

5

Neural Networks for Keyword Spotting

1. Deep Neural Network (DNN)

2. Convolutional Neural Network (CNN)

3. Recurrent Neural Network (RNN) for KWS

4. Convolutional Recurrent Neural Network (CRNN) for KWS

5. Depthwise Separable Convolutional Neural Network (DS-CNN) for KWS

6

Deep Neural Network (DNN)

• Input: Flattened feature matrix

• d x n layers (d layers each having n neurons)

• Each layer is followed by a rectified linear unit (ReLU) activations

• Output layer is a softmax generating probabilities for k keywords

7

.

.

.

ReLU

.

.

.

ReLU

X11 Xp1

X1q Xpq

1 1

. . .

So
ftm

ax

K
eyw

o
rd

s

Xpxq = X’qxp i.e. X in x1 … xq d layers of n neurons k keywords

Convolutional Neural Network (CNN)

• DNN fails to efficiently model
• Local temporal and spectral correlation in the speech features

• CNNs exploit this correlation by
• treating the input time-domain and spectral-domain features as an image

• performing 2-D convolution operations over it

8Xi
pxq i.e. Xi in x11 … x1q, …, xp1,… xpq

X11 X1q

Xp1 Xpq

Convolution
+ ReLU

Batch normalization
Pooling

Fully connected Prediction output

.

.

.

Recurrent Neural Network (RNN)

• RNNs exploits temporal relation between signals

• RNNs captures long term dependencies using “gating” mechanism
• RNN cells can be of type Long short-term memory (LSTM) or Gated Recurrent Unit

(GRU)
• Input, output, and forget gate

• RNNs operate for T time steps
• In each time step t, the spectral feature vector ft ∈ RF concatenated with the previous

step time output ht-1

9

Output layerRNN Cell RNN CellRNN Cell

MFCC Features TxF

h0 = 0 h1 h2 ht-1 ht………….

Convolutional Recurrent Neural Network (CRNN)

• CNN + RNN
• Exploit temporal / spatial

correlations using
• Convolutional layers

• Global temporal
dependencies in the speech
features using recurrent
network

• Network is bidirectional
• More learning capacity

• GRUs VS LSTM
• Fewer parameters

• Better convergence

10

Multi-layer
GRU

Multi-layer
GRU

Multi-layer
GRU

L1

…….

…….

Conv layer:
W x L x N

Stride
St x Sf

MFCC Features TxF

LT x S

T = (T - W) / St + 1 Flatten

Concat

Fully connected
layer

Output layer

Bidirectional

Depthwise Separable Convolutional Neural Network
(DS-CNN)
• DS-CNN replace the 3D

convolutional operation of CNN
into 2D convolutions followed by
1D convolutions
• A 2D filter is used to convolve each

channel in the input feature
• A 1D filter is used to convolve the

outputs in the depth dimension

• Compared to CNN, DS-CNN is
more efficient in terms of
• Number of parameters
• Number of operations

• Thus, we can have deeper and
wider architectures

11

Conv1

MFCC Features TxF

DS-Conv1

DS-Conv2

DS-ConvN

Average pool

Output layer

Depthwise
Conv

Barch Norm +
ReLU

Pointwise
Conv

Barch Norm +
ReLU

Experimental Setup

• Google speech commands dataset
• 65K 1 second audio clips of 30 keywords including:

• "Yes", "No", "Up", "Down“, "Left", "Right", "On", "Off", "Stop", "Go", along with "silence" (i.e. no
word spoken) and "unknown“ word, which is the remaining 20 keywords from the dataset.

• 80:10:10  Training: validation: test

• All neural networks are trained in Google Tensorflow framework
• Cross entropy loss

• Adam optimizer

• Batch size of 100

• Initial training of 10K iterations with learning rate 5 x 10-4

• Then, training of 10K iterations with learning rate 1 x 10-4

• Background noise and random time shift up to 100ms is added to training data

12

Training results

NN Architecture Accuracy Memory Operations

DNN 84.3 % 288 KB 0.57 Mops

CNN-1 90.7 % 556 KB 76.02 Mops

CNN-2 84.6 % 149 KB 1.46 Mops

LSTM 88.8 % 26 KB 2.06 Mops

CRNN 87.8 % 298 KB 5.85 MOps

13

• Memory for activations is reused across different layers

• Operations include multiplications and additions in the matrix multlipication
operations in each layer in the network

Resource constrained Neural Networks

• Keyword spotting considerations on microcontrollers
• Memory footprint

• Execution time

14

Neural network size Neural network limit Operations / inference limit

Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps

Large (L) 500 KB 80 MOps

Resource constrained Neural Network Architecture
Exploration
• Ideal model would have

• High accuracy

• Small memory footprint

• Lower number of computations

• Figure belonged to prior works

trained on speech commands

dataset

15

Summery of Best Neural Networks results

• An exhaustive search of feature extraction of hyperparameters followed by a
manual selection to narrow down the search space.

• DNNs are memory bound

16

Summery of Memory vs Operations vs Accuracy

17

Accuracy vs Memory and Operations of different DS-
CNN

18

KWS Deployement on Microcontoller

• STM32F746G-DISCO board
• Cortex –M7
• CMSIS-NN kernels
• 8-bit weights
• 8-bit activations
• 10 inference per second
• MFCC feature extraction

plus DNN execution takes
about 12 ms

• Application
• ~70 KB memory

• ~66 KB weights
• ~1 KB activations
• ~2 KB audio I/O and

MFCC features

19

Conclusion

• They design a hardware optimized neural network for microcontrollers which
is memory and compute efficient

• They carry out the task of keyword spotting

• They explore the hyperparameter search space and suggest parameter
settings for memory/compute constrained neural networks

20

