Hello Edge: Keyword Spotting on Microcontrollers

Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra ARM Research, Stanford University arXiv.org, 2017

Presented by **Mohammad Mofrad** University of Pittsburgh March 20, 2018

Problem Statement

- Speech in increasingly becoming a natural way to interact with electronic devices:
 - Amazon echo
 - Google home
 - Smart homes

- Keyword Spotting (KWS) is the process of detecting commonly known keywords. Example of KWS is "Alexa", "Ok Google", and "Hey Siri"
- In smart speakers Keyword Spotting (KWS) is used to:
 - Save energy
 - Avoid Cloud latency

Contribution

- Train a neural network for running Keyword Spotting on resource-constrained microcontrollers
 - 1st constraint: Limited memory footprint
 - 2nd constraint: Limited processing ⁱⁿ power
 - Optimize the neural network for these constraints without sacrificing accuracy
 - And meet low latency requirement

Keyword Spotting (KWC)

T = (*L* – *I* / *s*) + **1** frames

T x F features

Signal of length *L* Overlapping frames of length *I* Stride *s* using Log-mel filter bank energies (LFBE) and Mel-frequency Cepstral Coefficients (MFCC)

Speech feature matrix

is fed to a classifier which generates the probability of output classes

Microcontroller Systems

- Microcontroller
 - Processor core
 - On-chip SRAM
 - On-chip embedded flash
- ARM MbedTM platform
 - Processor: Cortex-M0 \rightarrow Cortex M7
 - Frequency: 48 MHz \rightarrow 216 MHz
 - SRAM: 8 KB → 320 KB
 - Flash: $32 \text{ KB} \rightarrow 1 \text{MB}$
- Mostly, microprocessors are designed for low cost and energy efficient applications.
- Integrated DSPs and SIMD and MAC instructions can accelerate neural network computations

CPU

Neural Networks for Keyword Spotting

- 1. Deep Neural Network (DNN)
- 2. Convolutional Neural Network (CNN)
- 3. Recurrent Neural Network (RNN) for KWS
- 4. Convolutional Recurrent Neural Network (CRNN) for KWS
- 5. Depthwise Separable Convolutional Neural Network (DS-CNN) for KWS

Deep Neural Network (DNN)

- Input: Flattened feature matrix
- d x n layers (d layers each having n neurons)
- Each layer is followed by a rectified linear unit (ReLU) activations
- Output layer is a softmax generating probabilities for k keywords

Convolutional Neural Network (CNN)

- DNN fails to efficiently model
 - Local temporal and spectral correlation in the speech features
- CNNs exploit this correlation by
 - treating the input time-domain and spectral-domain features as an image
 - performing 2-D convolution operations over it.

Recurrent Neural Network (RNN)

- RNNs exploits temporal relation between signals
- RNNs captures long term dependencies using "gating" mechanism
 - RNN cells can be of type Long short-term memory (LSTM) or Gated Recurrent Unit (GRU)
 - Input, output, and forget gate
- RNNs operate for T time steps
 - In each time step *t*, the spectral feature vector $f_t \in R^F$ concatenated with the previous step time output h_t -1 MFCC Features TXF

Depthwise Separable Convolutional Neural Network (DS-CNN)

- DS-CNN replace the 3D convolutional operation of CNN into 2D convolutions followed by 1D convolutions
 - A 2D filter is used to convolve each channel in the input feature
 - A 1D filter is used to convolve the outputs in the depth dimension
- Compared to CNN, DS-CNN is more efficient in terms of
 - Number of parameters
 - Number of operations
- Thus, we can have deeper and wider architectures

Experimental Setup

- Google speech commands dataset
 - 65K 1 second audio clips of 30 keywords including:
 - "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", along with "silence" (i.e. no word spoken) and "unknown" word, which is the remaining 20 keywords from the dataset.
 - 80:10:10 \rightarrow Training: validation: test
- All neural networks are trained in Google Tensorflow framework
 - Cross entropy loss
 - Adam optimizer
 - Batch size of 100
 - Initial training of 10K iterations with learning rate 5 x 10⁻⁴
 - Then, training of 10K iterations with learning rate 1 x 10⁻⁴
 - Background noise and random time shift up to 100ms is added to training data

Training results

- Memory for activations is reused across different layers
- Operations include multiplications and additions in the matrix multiplication operations in each layer in the network

NN Architecture	Accuracy	Memory	Operations	
DNN	84.3 %	288 KB	0.57 Mops	
CNN-1	90.7 %	556 KB	76.02 Mops	
CNN-2	84.6 %	149 KB	1.46 Mops	
LSTM	88.8 %	26 KB	2.06 Mops	
CRNN	87.8 %	298 KB	5.85 MOps	

Resource constrained Neural Networks

- Keyword spotting considerations on microcontrollers
 - Memory footprint
 - Execution time

Neural network size	Neural network limit	Operations / inference limit			
Small (S)	80 KB	6 MOps			
Medium (M)	200 КВ	20 MOps			
Large (L)	500 KB	80 MOps			

Resource constrained Neural Network Architecture Exploration

- Ideal model would have
 - High accuracy
 - Small memory footprint
 - Lower number of computations
- Figure belonged to prior works trained on speech commands dataset

Summery of Best Neural Networks results

- An exhaustive search of feature extraction of hyperparameters followed by a manual selection to narrow down the search space.
- DNNs are memory bound

NN model	S(80KB, 6MOps)		M(200KB, 20MOps)			L(500KB, 80MOps)			
	Acc.	Mem.	Ops	Acc.	Mem.	Ops	Acc.	Mem.	Ops
DNN	84.6%	80.0KB	158.8K	86.4%	199.4KB	397.0K	86.7%	496.6KB	990.2K
CNN	91.6%	79.0KB	5.0M	92.2%	199.4KB	17.3M	92.7%	497.8KB	25.3M
Basic LSTM	92.0%	63.3KB	5.9M	93.0%	196.5KB	18.9M	93.4%	494.5KB	47.9M
LSTM	92.9%	79.5KB	3.9M	93.9%	198.6KB	19.2M	94.8%	498.8KB	48.4M
GRU	93.5%	78.8KB	3.8M	94.2%	200.0KB	19.2M	94.7%	499.7KB	48.4M
CRNN	94.0%	79.7KB	3.0M	94.4%	199.8KB	7.6M	95.0%	499.5KB	19.3M
DS-CNN	94.4%	38.6KB	5.4M	94.9%	189.2KB	19.8M	95.4%	497.6KB	56.9M

Summery of Memory vs Operations vs Accuracy

Accuracy vs Memory and Operations of different DS-CNN

KWS Deployement on Microcontoller

STM32F746G-DISCO board

- Cortex –M7
- CMSIS-NN kernels
- 8-bit weights
- 8-bit activations
- 10 inference per second
- MFCC feature extraction plus DNN execution takes about 12 ms
- Application
 - ~70 KB memory
 - ~66 KB weights
 - ~1 KB activations
 - ~2 KB audio I/O and MFCC features

Conclusion

- They design a hardware optimized neural network for microcontrollers which is memory and compute efficient
- They carry out the task of keyword spotting
- They explore the hyperparameter search space and suggest parameter settings for memory/compute constrained neural networks