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Problem Statement 

• Speech in increasingly becoming a natural way to interact with electronic 
devices:
• Amazon echo

• Google home

• Smart homes

• Keyword Spotting (KWS) is the process of detecting commonly known 
keywords. Example of KWS is “Alexa”, “Ok Google”, and “Hey Siri”

• In smart speakers Keyword Spotting (KWS) is used to:
• Save energy

• Avoid Cloud latency
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Contribution

• Train a neural network for 
running Keyword Spotting on 
resource-constrained 
microcontrollers
• 1st constraint: Limited memory 

footprint

• 2nd constraint: Limited processing 
power

• Optimize the neural network for 
these constraints without 
sacrificing accuracy

• And meet low latency requirement
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Keyword Spotting (KWC)
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T = (L – l / s) + 1 frames
Signal of length L
Overlapping frames of length l
Stride s

T x F features
using  Log-mel filter bank 
energies (LFBE) 
and Mel-frequency Cepstral
Coefficients (MFCC)

Speech feature matrix
is fed to a classifier which 
generates the probability of 
output classes



Microcontroller Systems

• Microcontroller
• Processor core

• On-chip SRAM

• On-chip embedded flash

• ARM MbedTM platform
• Processor: Cortex-M0  Cortex M7 

• Frequency:     48 MHz  216 MHz

• SRAM:                   8 KB  320 KB

• Flash:                  32 KB  1MB

• Mostly, microprocessors are designed for low cost and energy efficient applications. 

• Integrated DSPs and SIMD and MAC instructions can accelerate neural network 
computations
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Neural Networks for Keyword Spotting

1. Deep Neural Network (DNN)

2. Convolutional Neural Network (CNN)

3. Recurrent Neural Network (RNN) for KWS

4. Convolutional Recurrent Neural Network (CRNN) for KWS

5. Depthwise Separable Convolutional Neural Network (DS-CNN) for KWS
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Deep Neural Network (DNN)

• Input: Flattened feature matrix

• d x n layers (d layers each having n neurons)

• Each layer is followed by a rectified linear unit (ReLU) activations

• Output layer is a softmax generating probabilities for k keywords
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Convolutional Neural Network (CNN)

• DNN fails to efficiently model 
• Local temporal and spectral correlation in the speech features 

• CNNs exploit this correlation by
• treating the input time-domain and spectral-domain features as an image 

• performing 2-D convolution operations over it 
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Recurrent Neural Network (RNN)

• RNNs exploits temporal relation between signals

• RNNs captures long term dependencies using “gating” mechanism
• RNN cells can be of type Long short-term memory (LSTM) or Gated Recurrent Unit 

(GRU) 
• Input, output, and forget gate

• RNNs operate for T time steps
• In each time step t, the spectral feature  vector ft ∈ RF concatenated with the previous 

step time output ht-1
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Convolutional Recurrent Neural Network (CRNN)

• CNN + RNN
• Exploit temporal / spatial 

correlations using 
• Convolutional layers 

• Global temporal 
dependencies in the speech 
features using recurrent 
network

• Network is bidirectional
• More learning capacity

• GRUs VS LSTM
• Fewer parameters

• Better convergence
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Depthwise Separable Convolutional Neural Network 
(DS-CNN)
• DS-CNN replace the 3D 

convolutional operation of CNN 
into 2D convolutions followed by 
1D convolutions
• A 2D filter is used to convolve each 

channel in the input feature
• A 1D filter is used to convolve the 

outputs in the depth dimension 

• Compared to CNN, DS-CNN is 
more efficient in terms of 
• Number of parameters
• Number of operations

• Thus, we can have deeper and 
wider architectures 
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Experimental Setup

• Google speech commands dataset
• 65K 1 second audio clips of 30 keywords including:

• "Yes", "No", "Up", "Down“, "Left", "Right", "On", "Off", "Stop", "Go", along with "silence" (i.e. no 
word spoken) and "unknown“ word, which is the remaining 20 keywords from the dataset.

• 80:10:10  Training: validation: test

• All neural networks are trained in Google Tensorflow framework
• Cross entropy loss

• Adam optimizer 

• Batch size of 100

• Initial training of 10K iterations with learning rate 5 x 10-4

• Then, training of 10K iterations with learning rate 1 x 10-4

• Background noise and random time shift up to 100ms is added to training data
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Training results

NN Architecture Accuracy Memory Operations

DNN 84.3 % 288 KB 0.57 Mops

CNN-1 90.7 % 556 KB 76.02 Mops

CNN-2 84.6 % 149 KB 1.46 Mops

LSTM 88.8 % 26 KB 2.06 Mops

CRNN 87.8 % 298 KB 5.85 MOps
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• Memory for activations is reused across different layers

• Operations include multiplications and additions in the matrix multlipication
operations in each layer in the network



Resource constrained Neural Networks

• Keyword spotting considerations on microcontrollers 
• Memory footprint

• Execution time
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Neural network size Neural network limit Operations / inference limit

Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps

Large (L) 500 KB 80 MOps



Resource constrained Neural Network Architecture 
Exploration
• Ideal model would have

• High accuracy

• Small memory footprint

• Lower number of computations

• Figure belonged to prior works

trained on speech commands 

dataset
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Summery of Best Neural Networks results

• An exhaustive search of feature extraction of hyperparameters followed by a 
manual selection to narrow down the search space. 

• DNNs are memory bound
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Summery of Memory vs Operations vs Accuracy
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Accuracy vs Memory and Operations of different DS-
CNN
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KWS Deployement on Microcontoller

• STM32F746G-DISCO board
• Cortex –M7
• CMSIS-NN kernels 
• 8-bit weights
• 8-bit activations
• 10 inference per second
• MFCC feature extraction

plus DNN execution takes
about 12 ms

• Application
• ~70 KB memory 

• ~66 KB weights
• ~1 KB activations
• ~2 KB audio I/O and 

MFCC features
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Conclusion

• They design a hardware optimized neural network for microcontrollers which 
is memory and compute efficient 

• They carry out the task of keyword spotting 

• They explore the hyperparameter search space and suggest parameter 
settings for memory/compute constrained neural networks
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