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Review, #1
• Designing to Last through Trends

Capacity Speed

Logic 2x  in  3 years 2x  in 3 years

DRAM 4x  in  3 years 2x  in 10 years

Disk 4x  in  3 years 2x  in 10 years

     Processor       ( n.a.) 2x in 1.5 years

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns, …
– Throughput, bandwidth

• “X is n times faster than Y” means
   ExTime(Y) Performance(X)  

   ---------    = --------------

   ExTime(X) Performance(Y)
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Review, #2

• Amdahl’s Law:

• CPI Law:

• Execution time is the REAL measure of computer 
performance!

• Good products created when have:
– Good benchmarks

– Good ways to summarize performance
• Die Cost goes roughly with die area4

Speedupoverall   =
ExTimeold

ExTimenew

=

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

    Program     Program          Instruction       Cycle
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Review, #3:
Price vs. Cost
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Computer Architecture Is …

the attributes of a [computing] system as seen 
by the programmer, i.e., the conceptual 
structure and functional behavior, as distinct 
from the organization of the data flows and 
controls the logic design, and the physical 
implementation.

                Amdahl, Blaaw, and Brooks,  1964

SOFTWARESOFTWARE
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Computer Architecture’s 
Changing Definition

• 1950s to 1960s: 
Computer Architecture Course = Computer Arithmetic

• 1970s to mid 1980s:  
Computer Architecture Course = Instruction Set 
Design, especially ISA appropriate for compilers

• 1990s: 
Computer Architecture Course = Design of CPU, 
memory system, I/O system, Multiprocessors
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Instruction Set Architecture (ISA)

instruction set

software

hardware
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Interface Design

A good interface:

• Lasts through many implementations (portability, 
compatability)

• Is used in many differeny ways (generality)

• Provides convenient  functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time
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Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
          from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)
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Evolution of Instruction Sets

• Major advances in computer architecture are 
typically associated with landmark instruction 
set designs

– Ex: Stack vs GPR (System 360)

• Design decisions must take into account:
– technology

– machine organization

– programming langauges

– compiler technology

– operating systems

• And they in turn influence these
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A "Typical" RISC

• 32-bit fixed format instruction (3 formats)

• 32 32-bit GPR (R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction

• Single address mode for load/store: 
base + displacement

– no indirection

• Simple branch conditions

• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
        CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS (≈ DLX)

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Pipelining: Its Natural!

• Laundry Example

• Ann, Brian, Cathy, Dave 
each have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D
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Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would  laundry take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time
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Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads 

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Pipelining Lessons
• Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20
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Computer Pipelines

• Execute billions of instructions, so 
throughout is what matters

• DLX desirable features: all instructions same 
length, registers located in same place in 
instruction format, memory operands only in 
loads or stores
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5 Steps of DLX Datapath
Figure 3.1, Page 130

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D
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Pipelined DLX Datapath
Figure 3.4, page 137

Memory
Access

Write
Back

Instruction
Fetch Instr. Decode

Reg. Fetch
Execute

Addr. Calc.

•  Data stationary control
– local decode for each instruction phase / pipeline stage
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Visualizing Pipelining
Figure 3.3, Page 133

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)



DAP Spr.‘98 ©UCB 21

Its Not That Easy for 
Computers

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline (missing sock)

– Control hazards: Pipelining of branches & other instructions 
that change the PC 

– Common solution is to stall the pipeline until the hazard is 
resolved, inserting one or more “bubbles” in the pipeline
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One Memory Port/Structural Hazards
Figure 3.6, Page 142

I
n
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r
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r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
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One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
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r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

stall

Instr 3
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Speed Up Equation for 
Pipelining

CPIpipelined = Ideal CPI 
+ Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth       Clock Cycleunpipelined
          Ideal CPI + Pipeline stall CPI   Clock Cyclepipelined

Speedup =     Pipeline depth       Clock Cycleunpipelined
          1 + Pipeline stall CPI   Clock Cyclepipelined

x

x
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory

• Machine B: Single ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
            SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
               = Pipeline Depth

       SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 
    x (clockunpipe/(clockunpipe / 1.05)

          = (Pipeline Depth/1.4) x  1.05

          = 0.75 x Pipeline Depth

               SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Data Hazard on R1
Figure 3.9, page 147

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB
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Three Generic Data Hazards
InstrI followed by InstrJ

• Read After Write (RAW) 
InstrJ tries to read operand before InstrI writes it
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Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Read (WAR) 
InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

• Can’t happen in DLX 5 stage pipeline because:

–  All instructions take 5 stages, and

–  Reads are always in stage 2, and 

–  Writes are always in stage 5
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Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Write (WAW) 
InstrJ tries to write operand before InstrI writes it

–  Leaves wrong result ( InstrI not InstrJ )

• Can’t happen in DLX 5 stage pipeline because: 

–  All instructions take 5 stages, and 

–  Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes
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CS 252 Administrivia
• Too many students with too varied background?

– In past, CS grad students took written prelim exams on 
undergraduate material in hardware, software, and theory

– Prelims were dropped => some unprepared for CS 252?

• In class exam on Wednesday January 28
– Improve 252 experience if recapture common background

– Bring 1 sheet of paper with notes on both sides

– Doesn’t affect grade, only admission into class

– 2 grades: Admitted or audit/take CS 152 1st (before class 
Friday)

• Review: Chapters 1- 3, CS 152 home page, maybe  
“Computer Organization and Design (COD)2/e” 

– If did take a class, be sure COD Chapters 2, 6, 7 are familiar

– Copies in Bechtel Library on 2-hour reserve
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CS 252 Administrivia
• Too many students?

• 61 students at 1st lecture
– To give proper attention to projects (as well as homeworks and 

quizes), I can handle up to 36 students

• Limiting Number of Students
– First priority is first year CS/ EECS grad students (32)

– Second priority is N-th year CS/ EECS grad students (21)

– Third priority is College of Engineering grad students (1)

– Fourth priority is CS/EECS undegraduate seniors (7)
(Note: 1 graduate course unit = 2 undergraduate course units)

– All other categories

• If not this semester, 252 is offered regularily (Fall)
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Forwarding to Avoid Data Hazard
Figure 3.10, Page 149

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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HW Change for Forwarding
Figure 3.20, Page 161
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I
n
s
t
r.

O
r
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r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153
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Data Hazard Even with Forwarding
Figure 3.13, Page 154
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r.
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r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9
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Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd
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Control Hazard on Branches
Three Stage Stall
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Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• DLX branch tests if register = 0 or ≠ 0

• DLX Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3
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Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

This is the correct 1 cycle
latency implementation!
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% DLX branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average

– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome



DAP Spr.‘98 ©UCB 41

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– DLX uses this

Branch delay of length n
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Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction

– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful 
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)
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Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.  
scheme  penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Pipelining Introduction 
Summary

• Just overlap tasks, and easy if tasks are independent

• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined



DAP Spr.‘98 ©UCB 45

Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on localilty for speed
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Memory Hierarchy: Terminology

• Hit: data appears in some block in the upper level 
(example: Block X) 

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)

• Miss penalty: time to replace a block from 
lower level, including time to replace in CPU

– access time: time to lower level 

= f(latency to lower level)

– transfer time: time to transfer block 

=f(BW between upper & lower levels)
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Simplest Cache: Direct  Mapped

Memory

4  Byte Direct Mapped Cache

Memory Address
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Cache Index

0

1

2

3

• Location 0 can be occupied by 
data from:

– Memory location 0, 4, 8, ... etc.

– In general: any memory location
whose 2 LSBs of the address are 0s

– Address<1:0>  => cache index

• Which one should we place in 
the cache?

• How can we tell which one is in 
the cache?
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1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag

– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9
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Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1

– Extra MUX delay for the data

– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

– Possible to assume a hit and continue.  Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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4 Questions for Memory 
Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
 (Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be 
placed in the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = Block Number Modulo Number Sets

Memory
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Q2: How is a block found if it is in 
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, 
expands tag
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Q3: Which block should be replaced 
on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRURandomLRURandom LRURandom

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?

• Write through—The information is written to 
both the block in the cache and to the block 
in the lower-level memory.

• Write back—The information is written only to 
the block in the cache. The modified cache 
block is written to main memory only when it 
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes

– WB: no repeated writes to same location

• WT always combined with write buffers so 
that don’t wait for lower level memory
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Write Buffer for Write Through

• A Write Buffer is needed between the Cache and 
Memory

– Processor: writes data into the cache and the write buffer

– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4

– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle

– Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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Impact of Memory Hierarchy on 
Algorithms

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops):
What does this mean to Compilers, Data structures, 
Algorithms?

• “The Influence of Caches on the Performance of 
Sorting” by A. LaMarca and R.E. Ladner. Proceedings 
of the Eighth Annual ACM-SIAM Symposium on 
Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting 
algorithm when all keys fit in memory

• Radix sort: also called “linear time” sort because for 
keys of fixed length and fixed radix a constant 
number of passes over the data is sufficient 
independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped 
L2 2MB cache, 8 byte keys, from 4000 to 4000000
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Quicksort vs. Radix as vary number 
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort
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Quicksort vs. Radix as vary number 
keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort



DAP Spr.‘98 ©UCB 63

Quicksort vs. Radix as vary number 
keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
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Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?
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5 minute Class Break

• 80 minutes straight is too long for me to 
lecture (12:40:00 – 2:00:00): 

–   ≈ 1 minute: review last time & motivate this lecture

– ≈ 20 minute lecture

–  ≈ 3 minutes: discuss class manangement

– ≈ 25 minutes: lecture 

–     5 minutes: break

– ≈25 minutes: lecture

–   ≈1 minute: summary of today’s important topics



DAP Spr.‘98 ©UCB 65

A Modern Memory Hierarchy

• By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the 

cheapest technology.

– Provide access at the speed offered by the fastest technology.
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Basic Issues in VM System Design
size of information blocks that are transferred from
      secondary to main storage (M)

block of information brought into M, and M is full, then some region
      of M must be released to make room for the new block -->
      replacement policy

which region of M is to hold the new block -->  placement policy 

missing item fetched from secondary memory only on the occurrence
      of a fault  -->  demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame
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Address Map
V = {0, 1, . . . , n - 1}   virtual address space
M = {0, 1, . . . , m - 1}  physical address space

MAP:  V -->  M  U  {0}  address mapping function

n > m

MAP(a)  =  a'  if data at virtual address a is present in physical 
                           address a'  and  a' in M

              =  0  if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer
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Paging Organization
frame 0
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Virtual Address and a Cache

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

It takes an extra  memory access to translate VA to PA

This makes cache access very expensive, and this is the 
"innermost loop" that you want to go as fast as possible

ASIDE:  Why access cache with PA at all?  VA caches have a problem!
      synonym  / alias problem:  two different virtual addresses map to 
      same physical address  =>  two different cache entries holding data for
      the same physical address!  

      for update:  must update all cache entries with same
      physical address or memory becomes inconsistent

      determining this requires significant hardware, essentially an
      associative lookup on the physical address tags to see if you 
      have multiple hits; or

      software enforced alias boundary: same lsb of VA &PA > cache size
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TLBs
A way to speed up translation is to use a special cache of recently
      used page table entries  --  this has many names, but the most
      frequently used is Translation Lookaside Buffer or TLB

Virtual Address   Physical Address   Dirty   Ref   Valid   Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
      (much less than main memory access time)
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Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
      set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
      high end machines.  This permits fully associative
      lookup on these machines.  Most mid-range machines use small
      n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB
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Reducing Translation Time

Machines with TLBs go one step further to reduce # 
cycles/cache access

They overlap the cache access with the TLB access:

    high order bits of the VA are used to look in the TLB 
while low order bits are used as index into cache
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Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
               access memory with the PA from the TLB
ELSE do standard VA translation
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Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
      index into the cache do not change  as the result of VA translation

This usually limits things to small caches, large page sizes, or high
      n-way set associative caches if you want a large cache

Example:  suppose everything the same except that the cache is
      increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
      go to 8K byte page sizes;
      go to 2 way set associative cache; or
      SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache
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Summary #1/4:

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

» Temporal Locality: Locality in Time

» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.

– Capacity Misses: increase cache size

– Conflict Misses:  increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Write Policy:
– Write Through: needs a write buffer.  Nightmare: WB saturation

– Write Back: control can be complex
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Summary #2 / 4: 
The Cache Design Space

• Several interacting dimensions
– cache size

– block size

– associativity

– replacement policy

– write-through vs write-back

– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload

» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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Summary #3/4: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by 
examining how they deal with 4 questions: 1) Where 
can block be placed? 2) How is block found? 3) What 
block is repalced on miss? 4) How are writes 
handled?

• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache 

without TLB misses!
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Summary #4/4: Memory Hierachy

• VIrtual memory was controversial at the time: 
can SW automatically manage 64KB across many 
programs?

– 1000X DRAM growth removed the controversy

• Today VM allows many processes to share single 
memory without having to swap all processes to 
disk; today VM protection is more important than 
memory hierarchy

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops):
What does this mean to Compilers, Data structures, 
Algorithms?


