
DAP Spr.‘98 ©UCB 1

Lecture 2: Review of Instruction
Sets, Pipelines, and Caches

Prof. David A. Patterson

Computer Science 252

Spring 1998

DAP Spr.‘98 ©UCB 2

Review, #1
• Designing to Last through Trends

Capacity Speed

Logic 2x in 3 years 2x in 3 years

DRAM 4x in 3 years 2x in 10 years

Disk 4x in 3 years 2x in 10 years

 Processor (n.a.) 2x in 1.5 years

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns, …
– Throughput, bandwidth

• “X is n times faster than Y” means
 ExTime(Y) Performance(X)

 --------- = --------------

 ExTime(X) Performance(Y)

DAP Spr.‘98 ©UCB 3

Review, #2

• Amdahl’s Law:

• CPI Law:

• Execution time is the REAL measure of computer
performance!

• Good products created when have:
– Good benchmarks

– Good ways to summarize performance
• Die Cost goes roughly with die area4

Speedupoverall =
ExTimeold

ExTimenew

=

1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

DAP Spr.‘98 ©UCB 4

Review, #3:
Price vs. Cost

0%

20%

40%

60%

80%

100%

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

0

1

2

3

4

5

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

4.7
3.8

1.8

3.5
2.5

1.5

DAP Spr.‘98 ©UCB 5

Computer Architecture Is …

the attributes of a [computing] system as seen
by the programmer, i.e., the conceptual
structure and functional behavior, as distinct
from the organization of the data flows and
controls the logic design, and the physical
implementation.

 Amdahl, Blaaw, and Brooks, 1964

SOFTWARESOFTWARE

DAP Spr.‘98 ©UCB 6

Computer Architecture’s
Changing Definition

• 1950s to 1960s:
Computer Architecture Course = Computer Arithmetic

• 1970s to mid 1980s:
Computer Architecture Course = Instruction Set
Design, especially ISA appropriate for compilers

• 1990s:
Computer Architecture Course = Design of CPU,
memory system, I/O system, Multiprocessors

DAP Spr.‘98 ©UCB 7

Instruction Set Architecture (ISA)

instruction set

software

hardware

DAP Spr.‘98 ©UCB 8

Interface Design

A good interface:

• Lasts through many implementations (portability,
compatability)

• Is used in many differeny ways (generality)

• Provides convenient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

DAP Spr.‘98 ©UCB 9

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)

DAP Spr.‘98 ©UCB 10

Evolution of Instruction Sets

• Major advances in computer architecture are
typically associated with landmark instruction
set designs

– Ex: Stack vs GPR (System 360)

• Design decisions must take into account:
– technology

– machine organization

– programming langauges

– compiler technology

– operating systems

• And they in turn influence these

DAP Spr.‘98 ©UCB 11

A "Typical" RISC

• 32-bit fixed format instruction (3 formats)

• 32 32-bit GPR (R0 contains zero, DP take pair)

• 3-address, reg-reg arithmetic instruction

• Single address mode for load/store:
base + displacement

– no indirection

• Simple branch conditions

• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
 CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

DAP Spr.‘98 ©UCB 12

Example: MIPS (≈ DLX)

Op

31 26 01516202125

Rs1 Rd immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register

561011

Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

DAP Spr.‘98 ©UCB 13

Pipelining: Its Natural!

• Laundry Example

• Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

DAP Spr.‘98 ©UCB 14

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

DAP Spr.‘98 ©UCB 15

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

DAP Spr.‘98 ©UCB 16

Pipelining Lessons
• Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

DAP Spr.‘98 ©UCB 17

Computer Pipelines

• Execute billions of instructions, so
throughout is what matters

• DLX desirable features: all instructions same
length, registers located in same place in
instruction format, memory operands only in
loads or stores

DAP Spr.‘98 ©UCB 18

5 Steps of DLX Datapath
Figure 3.1, Page 130

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

IR
L
M
D

DAP Spr.‘98 ©UCB 19

Pipelined DLX Datapath
Figure 3.4, page 137

Memory
Access

Write
Back

Instruction
Fetch Instr. Decode

Reg. Fetch
Execute

Addr. Calc.

• Data stationary control
– local decode for each instruction phase / pipeline stage

DAP Spr.‘98 ©UCB 20

Visualizing Pipelining
Figure 3.3, Page 133

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

DAP Spr.‘98 ©UCB 21

Its Not That Easy for
Computers

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Pipelining of branches & other instructions
that change the PC

– Common solution is to stall the pipeline until the hazard is
resolved, inserting one or more “bubbles” in the pipeline

DAP Spr.‘98 ©UCB 22

One Memory Port/Structural Hazards
Figure 3.6, Page 142

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

DAP Spr.‘98 ©UCB 23

One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

stall

Instr 3

DAP Spr.‘98 ©UCB 24

Speed Up Equation for
Pipelining

CPIpipelined = Ideal CPI
+ Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth Clock Cycleunpipelined
 Ideal CPI + Pipeline stall CPI Clock Cyclepipelined

Speedup = Pipeline depth Clock Cycleunpipelined
 1 + Pipeline stall CPI Clock Cyclepipelined

x

x

DAP Spr.‘98 ©UCB 25

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory

• Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed
 SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
 = Pipeline Depth

 SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)
 x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05

 = 0.75 x Pipeline Depth

 SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

DAP Spr.‘98 ©UCB 26

Data Hazard on R1
Figure 3.9, page 147

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB

DAP Spr.‘98 ©UCB 27

Three Generic Data Hazards
InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

DAP Spr.‘98 ©UCB 28

Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

• Can’t happen in DLX 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

DAP Spr.‘98 ©UCB 29

Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because:

– All instructions take 5 stages, and

– Writes are always in stage 5

• Will see WAR and WAW in later more complicated
pipes

DAP Spr.‘98 ©UCB 30

CS 252 Administrivia
• Too many students with too varied background?

– In past, CS grad students took written prelim exams on
undergraduate material in hardware, software, and theory

– Prelims were dropped => some unprepared for CS 252?

• In class exam on Wednesday January 28
– Improve 252 experience if recapture common background

– Bring 1 sheet of paper with notes on both sides

– Doesn’t affect grade, only admission into class

– 2 grades: Admitted or audit/take CS 152 1st (before class
Friday)

• Review: Chapters 1- 3, CS 152 home page, maybe
“Computer Organization and Design (COD)2/e”

– If did take a class, be sure COD Chapters 2, 6, 7 are familiar

– Copies in Bechtel Library on 2-hour reserve

DAP Spr.‘98 ©UCB 31

CS 252 Administrivia
• Too many students?

• 61 students at 1st lecture
– To give proper attention to projects (as well as homeworks and

quizes), I can handle up to 36 students

• Limiting Number of Students
– First priority is first year CS/ EECS grad students (32)

– Second priority is N-th year CS/ EECS grad students (21)

– Third priority is College of Engineering grad students (1)

– Fourth priority is CS/EECS undegraduate seniors (7)
(Note: 1 graduate course unit = 2 undergraduate course units)

– All other categories

• If not this semester, 252 is offered regularily (Fall)

DAP Spr.‘98 ©UCB 32

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

DAP Spr.‘98 ©UCB 33

HW Change for Forwarding
Figure 3.20, Page 161

DAP Spr.‘98 ©UCB 34

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153

DAP Spr.‘98 ©UCB 35

Data Hazard Even with Forwarding
Figure 3.13, Page 154

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

DAP Spr.‘98 ©UCB 36

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid
Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

DAP Spr.‘98 ©UCB 37

Control Hazard on Branches
Three Stage Stall

DAP Spr.‘98 ©UCB 38

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• DLX branch tests if register = 0 or ≠ 0

• DLX Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

DAP Spr.‘98 ©UCB 39

Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.

This is the correct 1 cycle
latency implementation!

DAP Spr.‘98 ©UCB 40

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% DLX branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average

– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome

DAP Spr.‘98 ©UCB 41

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– DLX uses this

Branch delay of length n

DAP Spr.‘98 ©UCB 42

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction

– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

DAP Spr.‘98 ©UCB 43

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

DAP Spr.‘98 ©UCB 44

Pipelining Introduction
Summary

• Just overlap tasks, and easy if tasks are independent

• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

DAP Spr.‘98 ©UCB 45

Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

DAP Spr.‘98 ©UCB 46

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

DAP Spr.‘98 ©UCB 47

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW relied on localilty for speed

DAP Spr.‘98 ©UCB 48

Memory Hierarchy: Terminology

• Hit: data appears in some block in the upper level
(example: Block X)

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the
lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

DAP Spr.‘98 ©UCB 49

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

• Average memory-access time
= Hit time + Miss rate x Miss penalty

(ns or clocks)

• Miss penalty: time to replace a block from
lower level, including time to replace in CPU

– access time: time to lower level

= f(latency to lower level)

– transfer time: time to transfer block

=f(BW between upper & lower levels)

DAP Spr.‘98 ©UCB 50

Simplest Cache: Direct Mapped

Memory

4 Byte Direct Mapped Cache

Memory Address
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Cache Index

0

1

2

3

• Location 0 can be occupied by
data from:

– Memory location 0, 4, 8, ... etc.

– In general: any memory location
whose 2 LSBs of the address are 0s

– Address<1:0> => cache index

• Which one should we place in
the cache?

• How can we tell which one is in
the cache?

DAP Spr.‘98 ©UCB 51

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag

– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

DAP Spr.‘98 ©UCB 52

Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache

– The two tags in the set are compared in parallel

– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

DAP Spr.‘98 ©UCB 53

Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1

– Extra MUX delay for the data

– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

– Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

DAP Spr.‘98 ©UCB 54

4 Questions for Memory
Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
 (Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

DAP Spr.‘98 ©UCB 55

Q1: Where can a block be
placed in the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = Block Number Modulo Number Sets

Memory

DAP Spr.‘98 ©UCB 56

Q2: How is a block found if it is in
the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

DAP Spr.‘98 ©UCB 57

Q3: Which block should be replaced
on a miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRURandomLRURandom LRURandom

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%

DAP Spr.‘98 ©UCB 58

Q4: What happens on a write?

• Write through—The information is written to
both the block in the cache and to the block
in the lower-level memory.

• Write back—The information is written only to
the block in the cache. The modified cache
block is written to main memory only when it
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes

– WB: no repeated writes to same location

• WT always combined with write buffers so
that don’t wait for lower level memory

DAP Spr.‘98 ©UCB 59

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and
Memory

– Processor: writes data into the cache and the write buffer

– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4

– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time) -> 1 / DRAM write cycle

– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

DAP Spr.‘98 ©UCB 60

Impact of Memory Hierarchy on
Algorithms

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

• “The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings
of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting
algorithm when all keys fit in memory

• Radix sort: also called “linear time” sort because for
keys of fixed length and fixed radix a constant
number of passes over the data is sufficient
independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped
L2 2MB cache, 8 byte keys, from 4000 to 4000000

DAP Spr.‘98 ©UCB 61

Quicksort vs. Radix as vary number
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort

DAP Spr.‘98 ©UCB 62

Quicksort vs. Radix as vary number
keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort

DAP Spr.‘98 ©UCB 63

Quicksort vs. Radix as vary number
keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

DAP Spr.‘98 ©UCB 64

5 minute Class Break

• 80 minutes straight is too long for me to
lecture (12:40:00 – 2:00:00):

– ≈ 1 minute: review last time & motivate this lecture

– ≈ 20 minute lecture

– ≈ 3 minutes: discuss class manangement

– ≈ 25 minutes: lecture

– 5 minutes: break

– ≈25 minutes: lecture

– ≈1 minute: summary of today’s important topics

DAP Spr.‘98 ©UCB 65

A Modern Memory Hierarchy

• By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the

cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache
1s 10,000,000s

 (10s ms)
Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
 (10s sec)

Ts

DAP Spr.‘98 ©UCB 66

Basic Issues in VM System Design
size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

DAP Spr.‘98 ©UCB 67

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

DAP Spr.‘98 ©UCB 68

Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

DAP Spr.‘98 ©UCB 69

Virtual Address and a Cache

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the
"innermost loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
 synonym / alias problem: two different virtual addresses map to
 same physical address => two different cache entries holding data for
 the same physical address!

 for update: must update all cache entries with same
 physical address or memory becomes inconsistent

 determining this requires significant hardware, essentially an
 associative lookup on the physical address tags to see if you
 have multiple hits; or

 software enforced alias boundary: same lsb of VA &PA > cache size

DAP Spr.‘98 ©UCB 70

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
 (much less than main memory access time)

DAP Spr.‘98 ©UCB 71

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

DAP Spr.‘98 ©UCB 72

Reducing Translation Time

Machines with TLBs go one step further to reduce #
cycles/cache access

They overlap the cache access with the TLB access:

 high order bits of the VA are used to look in the TLB
while low order bits are used as index into cache

DAP Spr.‘98 ©UCB 73

Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

DAP Spr.‘98 ©UCB 74

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes;
 go to 2 way set associative cache; or
 SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

DAP Spr.‘98 ©UCB 75

Summary #1/4:

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

» Temporal Locality: Locality in Time

» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.

– Capacity Misses: increase cache size

– Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Write Policy:
– Write Through: needs a write buffer. Nightmare: WB saturation

– Write Back: control can be complex

DAP Spr.‘98 ©UCB 76

Summary #2 / 4:
The Cache Design Space

• Several interacting dimensions
– cache size

– block size

– associativity

– replacement policy

– write-through vs write-back

– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload

» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

DAP Spr.‘98 ©UCB 77

Summary #3/4: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions: 1) Where
can block be placed? 2) How is block found? 3) What
block is repalced on miss? 4) How are writes
handled?

• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

DAP Spr.‘98 ©UCB 78

Summary #4/4: Memory Hierachy

• VIrtual memory was controversial at the time:
can SW automatically manage 64KB across many
programs?

– 1000X DRAM growth removed the controversy

• Today VM allows many processes to share single
memory without having to swap all processes to
disk; today VM protection is more important than
memory hierarchy

• Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

