Lectures 1: Review of Technology Trends and Cost/Performance

Prof. David A. Patterson Computer Science 252 Spring 1998

Original Food Chain Picture

Big Fishes Eating Little Fishes

1988 Computer Food Chain

1998 Computer Food Chain

Why Such Change in 10 years?

Performance

- Technology Advances
 - » CMOS VLSI dominates older technologies (TTL, ECL) in cost <u>AND</u> performance
- Computer architecture advances improves low-end
 - » RISC, superscalar, RAID, ...

Price: Lower costs due to ...

- Simpler development
 - » CMOS VLSI: smaller systems, fewer components
- Higher volumes
 - » CMOS VLSI : same dev. cost 10,000 vs. 10,000,000 units
- Lower margins by class of computer, due to fewer services

Function

Rise of networking/local interconnection technology

Technology Trends: Microprocessor Capacity

Memory Capacity (Single Chip DRAM)

size

Technology Trends (Summary)

	<u>Capacity</u>	Speed (latency)	
Logic	2x in 3 years	2x in 3 years	
DRAM	4x in 3 years	2x in 10 years	
Disk	4x in 3 years	2x in 10 years	

Processor Performance Trends

Processor Performance (1.35X before, 1.55X now)

Performance Trends (Summary)

- Workstation performance (measured in Spec Marks) improves roughly 50% per year (2X every 18 months)
- Improvement in cost performance estimated at 70% per year

Measurement and Evaluation

Computer Architecture Topics

Input/Output and Storage

Computer Architecture Topics

Processor-Memory-Switch

Multiprocessors Networks and Interconnections

Shared Memory, Message Passing, Data Parallelism

Network Interfaces

Topologies, Routing, Bandwidth, Latency, Reliability

CS 252 Course Focus

Understanding the design techniques, machine structures, technology factors, evaluation methods that will determine the form of computers in 21st Century

Topic Coverage

Textbook: Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2nd Ed., 1996.

- 1.5 weeks Review: Fundamentals of Computer Architecture (Ch. 1), Instruction Set Architecture (Ch. 2), Pipelining (Ch. 3)
- 1 week: Pipelining and Instructional Level Parallelism (Ch. 4)
- 2.5 weeks: Vector Processors and DSPs (Appendix B)
- 1 week: Memory Hierarchy (Chapter 5)
- 1.5 weeks: Input/Output and Storage (Chapter 6)
- 1.5 weeks: Networks and Interconnection Technology (Chapter 7)
- 1.5 weeks: Multiprocessors (Ch. 8 + Culler book draft Chapter 1)
- Research Guest Lectures: Reconfigurable MPer("BRASS"), DRAM+MPer("IRAM"), Systems of Systems ("Millennium")

CS252: Staff

Instructor: David A. Patterson

Office: 635 Soda Hall, 642-6587 patterson@cs

Office Hours: Wed 3:30-4:30 or by appt.

(Contact Tim Ryan, 643-4014, tryan@cs, 634 Soda)

T. A: Joe Gebis

Office: ?? Soda Hall, 642-?? gebis @eecs

TA Office Hours TBD

Class: Wed, Fri 2:10:00 - 3:30:00 203 McLaughlin

Text: Computer Architecture: A Quantitative Approach,

Second Edition (1996) (≥ second printing)

Web page: http://http.cs.berkeley.edu/~patterson/252/

Lectures available online <11:30AM day of lecture

Newsgroup: ucb.class.c252

Lecture style

- 1-Minute Review
- 20-Minute Lecture
- 5- Minute Administrative Matters
- 25-Minute Lecture
- 5-Minute Break (water, stretch)
- 25-Minute Lecture
- Instructor will come to class early & stay after to answer questions

Grading

- 30% Homeworks (work in pairs)
- 30% Examinations (2 Midterms)
- 30% Research Project (work in pairs)
 - Transition from undergrad to grad student
 - Berkeley wants you to succeed, but you need to show initiative
 - pick topic
 - meet 3 times with faculty/TA to see progress
 - give oral presentation
 - give poster session
 - written report like conference paper
 - $-\approx$ 3 weeks work full time for 2 people
 - Opportunity to do "research in the small" to help make transition from good student to research colleague
- 10% Class Participation

Course Style

- Reduce the pressure of taking quizes
 - Only 2 Graded Quizes: Wednesday Mar. 4 and Wed. Apr. 22
 - Our goal: test knowledge vs. speed writing
 - 3 hrs to take 1.5-hr test (5:30-8:30 PM, Sibley Auditorium)
 - Both mid-term quizes can bring summary sheet
 - » Transfer ideas from book to paper
 - Last chance Q&A: during class time day of exam
- Students/Staff meet over free pizza/drinks at La Vals: Wed Mar. 4 (8:30 PM) and Wed Apr 22 (8:30 PM)

Course Style

 Everything is on the course Web page: www.cs.berkeley.edu/~pattrsn/252S98/index.html

Notes:

- ASUC said today that the books would be in in less than 1 week.
 They can also be found in local book stores (Cody's and a few in Barnes and Noble), as well as at WWW bookstores.
- The Handouts section of the CS152 homepage from Fall 1997 includes the midterms from this semester and as well as pointers to past exams. Solutions are included.

• Schedule:

- 2 Graded Quizes: Wednesday Mar. 4 and Wed. Apr. 22
- Project Reviews: Fri. Feb 25, Wed. Apr 1, Wed. Apr 15
- Oral Presentations: Thu/Fri April 30/May 1 1-7PM/1-5PM
- 252 Poster Session: Wed May 6
- 252 Last lecture: Fri May 8
- Project Papers/URLs due: Mon May 11

Project Suggestions

Related Courses

Integrated Circuit Technology from a computer-organization viewpoint

Coping with CS 252

- Spring 95 CS 252 = my worst teaching experience
- Too many students with too varied background?
- 60 students:
 - To give proper attention to projects (as well as homeworks and quizes), I can handle up to 36 students
- Limiting Number of Students
 - First priority is first year CS/ EECS grad students
 - Second priority is N-th year CS/ EECS grad students
 - Third priority is College of Engineering grad students
 - Fourth priority is CS/EECS undegraduate seniors
 (Note: 1 graduate course unit = 2 undergraduate course units)
 - All other categories
- If not this semester, 252 is offered regularily (Fall)

Coping with CS 252

- Students with too varied background?
 - In past, CS grad students took written prelim exams on undergraduate material in hardware, software, and theory
 - 1st 5 weeks reviewed background, helped 252, 262, 270
 - Prelims were dropped => some unprepared for CS 252?
- In class exam on Wednesday January 28
 - Doesn't affect grade, only admission into class
 - 2 grades: Admitted or audit/take CS 152 1st
 - Improve your experience if recapture common background
- Review: Chapters 1- 3, CS 152 home page, maybe "Computer Organization and Design (COD)2/e"
 - Chapters 1 to 8 of COD if never took prerequisite
 - If did take a class, be sure COD Chapters 2, 6, 7 are familiar
 - Copies in Bechtel Library on 2-hour reserve

Computer Engineering Methodology **Technology Trends**

Computer Engineering Methodology **Evaluate Existing** Systems for Bottlenecks **Benchmarks Technology Trends** DAP Spr. 98 ©UCB 26

Computer Engineering Methodology

Implementation Complexity

Evaluate Existing
Systems for
Bottlenecks

Technology

Benchmarks

Implement Next
Generation System

Simulate New Designs and Organizations

Workloads

Measurement Tools

- Benchmarks, Traces, Mixes
- Hardware: Cost, delay, area, power estimation
- Simulation (many levels)
 - ISA, RT, Gate, Circuit
- Queuing Theory
- Rules of Thumb
- Fundamental "Laws"/Principles

The Bottom Line: Performance (and Cost)

Plane	DC to Paris	Speed	Passengers	Throughput (pmph)
Boeing 747	6.5 hours	610 mph	470	286,700
BAD/Sud Concodre	3 hours	1350 mph	132	178,200

- Time to run the task (ExTime)
 - Execution time, response time, latency
- Tasks per day, hour, week, sec, ns ... (Performance)
 - Throughput, bandwidth

The Bottom Line: Performance (and Cost)

"X is n times faster than Y" means

- Speed of Concorde vs. Boeing 747
- Throughput of Boeing 747 vs. Concorde

Speedup due to enhancement E:

Suppose that enhancement E accelerates a fraction F of the task by a factor S, and the remainder of the task is unaffected

Speedup_{overall} =
$$\frac{\text{ExTime}_{\text{old}}}{\text{ExTime}_{\text{new}}} = \frac{1}{(1 - \text{Fraction}_{\text{enhanced}}) + \frac{1}{\text{Fraction}_{\text{enhanced}}}}$$
Speedup_{enhanced}

 Floating point instructions improved to run 2X; but only 10% of actual instructions are FP

ExTime_{new} =

Speedup_{overall} =

Floating point instructions improved to run 2X;
 but only 10% of actual instructions are FP

ExTime_{new} = ExTime_{old} x
$$(0.9 + .1/2) = 0.95$$
 x ExTime_{old}

Speedup_{overall} =
$$\frac{1}{0.95}$$
 = 1.053

Metrics of Performance

Aspects of CPU Performance

 $\frac{\text{CPU time}}{\text{Program}} = \frac{\text{Seconds}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} \times \frac{\text{Cycles}}{\text{Instruction}} \times \frac{\text{Seconds}}{\text{Cycle}}$

	Inst Count	CPI	Clock Rate
Program	X		
Compiler	X	(X)	
Inst. Set.	X	X	
Organization		X	X
Technology			X

Cycles Per Instruction

"Average Cycles per Instruction"

CPU time = CycleTime *
$$\sum_{i=1}^{n}$$
 CPI_i * I_i

"Instruction Frequency"

$$CPI = \sum_{i=1}^{n} CPI_i * F_i \quad \text{where } F_i = I_i$$
Instruction Count

Invest Resources where time is Spent!

Example: Calculating CPI

Base Machine (Reg / Reg)

Op	Freq	Cycles	CPI(i)	(% Time)
ALU	50%	1	.5	(33%)
Load	20%	2	.4	(27%)
Store	10%	2	.2	(13%)
Branch	20%	2	.4	(27%)
	L/		1.5	
	Typical Mix			

SPEC: System Performance Evaluation Cooperative

First Round 1989

10 programs yielding a single number ("SPECmarks")

Second Round 1992

- SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs)
 - » Compiler Flags unlimited. March 93 of DEC 4000 Model 610:

Third Round 1995

- new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 floating point)
- "benchmarks useful for 3 years"
- Single flag setting for all programs: SPECint_base95,
 SPECfp_base95

How to Summarize Performance

- Arithmetic mean (weighted arithmetic mean) tracks execution time: $\sum (T_i)/n$ or $\sum (W_i * T_i)$
- Harmonic mean (weighted harmonic mean) of rates (e.g., MFLOPS) tracks execution time: n/∑(1/R_i) or n/∑(W_i/R_i)
- Normalized execution time is handy for scaling performance (e.g., X times faster than SPARCstation 10)
- But do not take the arithmetic mean of normalized execution time, use the geometric mean (∏(R_i)^1/n)

5 minute Class Break

• 80 minutes straight is too long for me to lecture (2:10:00 – 3:30:00):

- ≈ 1 minute: review last time & motivate this lecture

- ≈ 20 minute lecture

- ≈ 3 minutes: discuss class manangement

- ≈ 25 minutes: lecture

5 minutes: break

- ≈25 minutes: lecture

- ≈1 minute: summary of today's important topics

SPEC First Round

- One program: 99% of time in single line of code
- New front-end compiler could improve dramatically

Impact of Means on SPECmark89 for IBM 550

Ra	tio to V	AX:	<u>Time</u>	<u>e</u> : <u>\</u>	<u> Neighte</u>	<u>d Time</u> :
Program	Before	After	Before	After	Before	After
gcc	30	29	49	51	8.91	9.22
espresso	35	34	65	67	7.64	7.86
spice	47	47	510	510	5.69	5.69
doduc	46	49	41	38	5.81	5.45
nasa7	78	144	258	140	3.43	1.86
li	34	34	183	183	7.86	7.86
eqntott	40	40	28	28	6.68	6.68
matrix300	78	730	58	6	3.43	0.37
fpppp	90	87	34	35	2.97	3.07
tomcatv	33	138	20	19	2.01	1.94
Mean	54	72	124	108	54.42	49.99
	Geome	etric	Arithme	tic	Weighte	d Arith.
	Ratio	1.33	Ratio	1.16	Ratio	1.09
						DAP Spr. '98 ©U

Performance Evaluation

- "For better or worse, benchmarks shape a field"
- Good products created when have:
 - Good benchmarks
 - Good ways to summarize performance
- Given sales is a function in part of performance relative to competition, investment in improving product as reported by performance summary
- If benchmarks/summary inadequate, then choose between improving product for real programs vs. improving product to get more sales; Sales almost always wins!
- Execution time is the measure of computer performance!

Integrated Circuits Costs

Dies per wafer =
$$\frac{\pi * (\text{Wafer_diam} / 2)^2}{\text{Die Area}} - \frac{\pi * \text{Wafer_diam}}{\sqrt{2 * \text{Die Area}}} - \text{Test dies}$$

Die Yield = Wafer yield * $\{1 + \frac{\text{Defects_per_unit_area} * \text{Die_Area}}{\sqrt{2 * \text{Die Area}}} - \frac{\alpha}{2 * \text{Die_Area}} = \frac{\alpha}{$

Die Cost goes roughly with die area⁴

Real World Examples

	Metal layers	_	Wafer n cost	Defect /cm²		Dies/ wafer	Yield	Die Cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 6	601 4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 710	0 3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
SuperSPA	RC 3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

⁻ From "Estimating IC Manufacturing Costs," by Linley Gwennap, *Microprocessor Report*, August 2, 1993, p. 15

Cost/Performance

What is Relationship of Cost to Price?

- Component Costs
- Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty
- Gross Margin (add 82% to 186%) nonrecurring costs:
 R&D, marketing, sales, equipment maintenance, rental, financing cost, pretax profits, taxes
- Average Discount to get List Price (add 33% to 66%): volume discounts and/or retailer markup

Chip Prices (August 1993)

• Assume purchase 10,000 units

Chip	Area	Mfg.	Price	Multi-	Comment
	mm ²	cost		plier	
386DX	43	\$9	\$31	3.4	Intense Competition
486DX2	81	\$35	\$245	7.0	No Competition
PowerPC 601	121	\$77	\$280	3.6	
DEC Alpha	234	\$202	\$1231	6.1	Recoup R&D?
Pentium	296	\$473	\$965	2.0	Early in shipments

Summary: Price vs. Cost

Summary, #1

Designing to Last through Trends

```
CapacitySpeedLogic2x in 3 years2x in 3 yearsDRAM4x in 3 years2x in 10 yearsDisk4x in 3 years2x in 10 years
```

- 6yrs to graduate => 16X CPU speed, DRAM/Disk size
- Time to run the task
 - Execution time, response time, latency
- Tasks per day, hour, week, sec, ns, ...
 - Throughput, bandwidth
- "X is n times faster than Y" means

Summary, #2

Amdahl's Law:

$$Speedup_{overall} = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + Fraction_{enhanced}}$$
• CPI Law:
$$Speedup_{enhanced}$$

- Execution time is the REAL measure of computer performance!
- Good products created when have:
 - Good benchmarks, good ways to summarize performance
- Die Cost goes roughly with die area⁴
- Can PC industry support engineering/research investment?

 DAP Spr. '98 @UCB 52