Input/output (I/O)

- I/O connects
 - User (human) and CPU (or a program running on it)
 - Environment (physical world) and CPU (or a program running on it)
 - Bottom line: I/O devices and CPU

- I/O devices have vastly different performance requirements
 - E.g., Hard disk vs. mouse
 - Bandwidth (e.g., block-oriented) vs. latency (e.g., character-oriented)

- I/O system architecture
 - Control: Polling (I/O device is “passive”) vs. interrupt (I/O device is “active”)
 - Synchronous or asynchronous buses
 - Parallel or serial buses
 - DMA (direct memory access)

- I/O interfaces are driven by standards

I/O devices

- To/from users
 - Display, keyboard, mouse, ...
- To/from non-volatile storage
 - Hard disk, tape, flash drives, ...
- To/from other computers
 - Network interface card (NIC), ...

- Questions
 - What are the performance requirements of these devices?
 - Are there changing needs?

Performance aspects

- I/O devices typically have fixed bandwidth requirements
 - What is the necessary bandwidth (to/from video buffer) for a 1024x768 screen at 60Hz refresh rate?

- Two tiers
 - Between user and device
 - Display screen ↔ video card (VGA cable & signal interface)
 - Between device and CPU
 - Video card ↔ CPU (e.g., AGP)

- Another bandwidth example
 - How many transactions per second can be handled?

- Latency
I/O bus

- **Processor-memory bus**
 - Masters: processor, I/O bridge (esp. DMA)
 - Slave: main memory
- **I/O bus**
 - Decouples memory and I/O bus transactions
 - Accommodates (slower) I/O devices and allows efficient data transfer using dedicated buffers and DMA

CPU-I/O interfacing

- **Memory-mapped I/O**
 - I/O control bits (e.g., turn on, turn off, change color, ...) are located in memory addresses
 - Use regular load and store to read from and write to those bits
 - These addresses are “volatile”
- **Dedicated I/O address space and instructions**
 - In any case, I/O device control is done via well-defined “interface” – register specification

DMA (direct memory access)

- **Taps into the main memory bus and I/O device buffers**
 - From I/O device to main memory (e.g., copying a new network packet from NIC to main memory)
 - From main memory to I/O device (e.g., writing a block of data from memory to hard disk)
 - From I/O device to I/O device
 - From a main memory location to another
- **Key is “programmability”**
 - Source and destination
 - Total transfer size (how many bytes in total?)
 - Transfer unit (how many bytes at a time?)
 - Transfer triggering condition & transfer termination condition
 - Various event notification methods (e.g., termination, error, ...)
- **DMA vs. CPU priority**

DMA and virtual memory

- **Different virtual memory pages have different physical page numbers**
 - DMA operation over multiple pages can pose a problem – “what is the next page?”
- **Solutions**
 - DMA using VM addresses
 - With translation hardware
 - OS does not remap those pages until DMA is done
 - Partition DMA transfer into pages
 - OS chains the pages for the requester
DMA and cache coherence

- Two copies
 - One in cache
 - One in main memory
 - When transferring data from memory to I/O
 - When transferring data from I/O to memory

- Solutions
 - Do not cache I/O data
 - Flush cache whenever needed (e.g., write dirty data to main memory before I/O write)
 - Similarly, invalidate cache before I/O read
 - Primitives (special instructions or registers to control the actions) are provided by hardware

Bus

- Connects different components in a computer system
 - CPU-memory
 - Memory-I/O
 - Chip-to-chip
 - There are “serial” buses

- Processor-memory bus vs. I/O bus
- Synchronous vs. asynchronous
- Master & slave
 - When we have multiple masters, we need “arbitration”
- Address & data
 - Separate signals or multiplexed
- Split transaction bus
 - Decouples address transfer and data transfer and allows multiple address transfers before the first data transfer takes place ⇒ increased bus utilization, high bandwidth at the cost of increased design complexity

Master & slave

- Master
 - Bus entity that can initiate a bus transaction
 - Examples: CPU, DMA

- Slave
 - Bus entity that does not initiate a transaction by itself
 - Rather, it only responds to a request from a bus master
 - Example: Memory

Bus signals

- Address

- Data

- Control
 - Signals that show or govern: bus transaction type, arbitration, data transfer timing, exception, etc.

- As to timing, address and control signals precede data for read (why?) or they can come (close) together for write
AMBA example

- AMBA (Advanced Microcontroller Bus Architecture) from ARM

Transfer with “wait” states

Multiple transfers

Burst, sequential (increasing)
Burst, wrapping

Magnetic disk drive

- Stack of platters
- Two surfaces per platter
- Tracks & sectors

- Heads move together (single arm)
- Disk access time
 - Queueing + seek
 - Rotation + transfer

Magnetic disk drive, performance

- Queueing time
 - How many jobs are queued at the time of request
- Seek time
 - Time needed to move the arm to the target track
 - Mechanical!
- Rotation delay
 - Time for the target sector to be under the head
 - ½ rotation time on average
 - Mechanical!
- Transfer time
 - Time to read out, buffer, and transfer data
 - Has to do with rotation speed, recording density, buffering method, and interface used

Improving magnetic disk drive

- Use smart scheduling to reduce queueing time
 - Locality-based scheduling
- Faster seeking or arm movement
 - Mechanical
- Faster rotation speed (currently 7200rpm or higher)
 - Mechanical
- Denser recording
 - E.g., vertical magnetization “Get perpendicular” - http://www.hitachigst.com/hdd/research/recording_head/pr/Perpendicular_Animation.html
- Larger buffer (currently 16MB for PCs)
 - Smart caching
 - Flash buffer (a.k.a. hybrid hard drive)
- Higher-bandwidth bus standards
 - Serial ATA or SATA: 150MB/s ⇒ 300MB/s ⇒ 600MB/s
 - C.f., parallel ATA or PATA: max 133MB/s
Magnetic disk drive, some metrics

- **Capacity**
 - GB

- **Performance**
 - Latency (ms) + transfer rate (MB/s)

- **Power consumption**
 - Watt
 - There are different modes (e.g., spindle off)

- **Form factor**
 - Inch \times inch \times inch

- **Reliability**
 - MTBF (mean time between failures), POH (power-on hours)

- **Vibration, thermal, EMI, ...**

- **Cost**
 - $\$, MB/$$

Hard disk product families

- **PC/workstation (3.5-in)**
 - Performance, price, and capacity
 - 200–1,000GB

- **Notebook (2.5-in)**
 - Power, capacity, and form factor
 - 40–250GB

- **Embedded products**
 - Cost sensitivity and reliability
 - 80–250GB (PVR)

- **Micro-drive (<1-in)**
 - Form factor, power, and cost
 - 2–8GB

Example specification

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/Write Speed</td>
</tr>
<tr>
<td>Read Time (ms)</td>
</tr>
<tr>
<td>0.8 ms</td>
</tr>
<tr>
<td>Write Time (ms)</td>
</tr>
<tr>
<td>0.3 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reliability Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF</td>
</tr>
<tr>
<td>7,200 hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>1 in</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>4 in</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>0.75 in</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>1.13 lb</td>
</tr>
</tbody>
</table>

Price per GB trend
Cost vs. access time

Cost vs. access time

SRAM
DRAM
Disk

Hybrid hard drive

A H-HDD also has a non-volatile cache

All disks have a DRAM cache

ATA Interface

Disk comes ready in less than 1 second

NV Cache

DRAM Cache

HHD boot/resume (Windows)

- During shutdown or hibernate all the disk sectors needed to boot or resume are pinned into the NV cache
- On next power on the BIOS POST runs and the disk is powered on but the spindle won’t be ready for 2~4 seconds
- BIOS can read data from the NV cache and all boot process I/O can be read from the NV cache
- Once the rotating media is ready I/O can be satisfied by both NV cache and rotating media for optimized read performance
Power saving mode (Windows)

- SuperFetch buffers disk data in system DRAM to fulfill reads
- Write I/Os buffered in NV cache while disk is spun down
- Disk spins up only when
 - Read cache miss
 - NV cache full
- The disk spin-down and continues to use the NV cache

Hybrid hard drive summary

- Basic idea
 - Implement a 64—128MB NV cache using NAND flash memory
 - The NV cache size will increase as NAND flash memory price goes down
- Potential benefits
 - Reduce boot time and resume time
 - Extend spindle down time ⇒ lower power
 - Higher reliability
- Problem
 - Cost
- Full flash-based hard drives are already on the market

Solid-state disk (SSD)

- Instead of magnetic media accessed via mechanical parts (spindle motor, arm, …), SSD uses only solid-state components (NAND flash chips) to store information
- NAND flash memories are optimized for storage applications (larger read/write data unit than other addressable memories like SRAM and DRAM)
 - C.f. NOR flash has been favored to store codes
- NAND flash memories are susceptible to write endurance
 - Various wear-leveling techniques have been developed
 - Hidden in flash translation layer or FTL
- A fun video:
 http://www.youtube.com/watch?v=96dWOe4Djs

Optical discs

- Optical disc drives have become a standard archive/backup device for personal computing
- Based on optics/laser technology
- For writing, “phase-change” materials used (i.e., two different reflection rate)

- Compact Disc: ~700MB
- DVD: ~4.7GB
- Blu-ray Disc: ~27GB
Storage devices trend

- Hard disk
 - We will see 1TB hard disks become mainstream in PC soon
 - 2x capacity increase per year
 - Perpendicular recording has been fully adopted
 - Hybrid disks has been used somewhat (from notebook market)
 - Solid-state disks are gaining momentum (Samsung’s 64GB SSD was <$200 @Amazon, 11/06/2009)
- Optical disk
 - CD speed of ~52x (saturated)
 - Writeable DVD drives prevalent now (~16x, speed saturated)
 - Standard battle ended; Blu-ray group (Sony, Samsung, …) won over HD-DVD (previously AOD) group (Toshiba, NEC, …)
- Flash memory cards
 - 16GB cards and 8GB USB drives are available
 - Device (NAND flash) capacity has doubles every year (will slow down)

Reliability issues in storage

- We don’t want to lose valuable data
- Fault is the cause of an error
 - When a fault occurs, it creates a latent error, which can later manifest itself
 - System failure occurs because of a manifested error
- Example
 - Alpha particle hits DRAM cell (fault)
 - Bit inverted (error) – latent until it is read
 - Error is propagated and affects the delivered service (failure)

MTTF, MTTR, …

- MTTF (mean time to failure)
 - 1/MTTF: rate of failures
- MTTR (mean time to repair)
- MTBF (mean time between failures)
 - MTTF + MTTR
- Module availability = MTTF/MTBF

Reliability improvement

- Fault avoidance
 - How to prevent, by construction, fault occurrences
- Fault tolerance
 - How to provide, by redundancy, continued service in spite of faults
- Error removal
 - How to minimize, by verification, the presence of latent errors
- Error forecasting
 - How to estimate, by evaluation, the presence, creation, and consequences of errors
RAID

- Redundant array of inexpensive dirks
- Disk array with striped data can provide high bandwidth
 - But not necessarily smaller latency
- What about reliability?
 - Error rate with 100 hard disks is 100 times higher than that of 1 disk

RAID 0 and 1

- RAID 0
 - Data striped
 - No provision for reliability
 - This is not really a RAID – it’s AID
- RAID 1
 - Data mirrored
 - Every bit is written in two different disks
 - Expensive...

RAID 2 and 3

- RAID 2
 - Bit interleaved parity
 - Memory style ECC (error correction code)
 - Still expensive
- RAID 3
 - Byte-interleaved parity
 - Add 1 check disk for N disks (overhead —1/N)

Optimizing small writes

3R + 2W

2R + 2W
RAID 4 and 5

- RAID 4
 - Block-interleaved parity
 - 1 check disk for N data disks
 - Check is done on a block (with the original data block possibly residing in a single disk)
 - Allows parallel reads
- RAID 5
 - Same as RAID 4 but check blocks are also interleaved

RAID 5

- Same as RAID 4 but check blocks are also interleaved

RAID 6

- P+Q redundancy
- Added more parity for improved error recovery

Berkeley’s RAID prototype

- c. 1989
- Sun 4/280 workstation w/ 128MB of DRAM
- Four dual-string SCSI controllers
- 28 5.25-in SCSI disks and specialized disk striping software