CS/COE0447: Computer Organization
and Assembly Language

Chapter 3

Sangyeun Cho

Dept. of Computer Science
University of Pittsburgh

Binary division
= Dividend = divisor X quotient + remainder

= Given dividend and divisor, we want to obtain quotient (Q)
and remainder (R)

= We will start from our paper & pencil method

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
2

Hardware design 1

64-bit
shift register

—_— .
Divisor 9 32-bit
Shift right shift register

64 bits

[

.
7 Quotient

64-bit ALU / Shift left
32 bits
Remainder Control
Write | test
64 bits }
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Hardware design 2

32-bit
e shift register
— 64-bit
32 bits shift register)
@ —
,»'f‘: Quotient
U/ Shift left |
- 32 hits
Remainder
64 bits

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Hardware design 3

Divisor

32 bits

Shift right
Remainder t
/ Write

64 bits \

3. Find remainder here

CS/CoE0447:

4. Find quotient here

Computer Organization and Assembly Language

Example

2. Run the algorithm

1. Place dividend here first

s

Remainder = 0

| 1. Shift the Remainder register left 1 bit |

|

2_ Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the

Remainder register

Test Remainder

[

Remainder < 0

3a. Shift the
left, setting the ne:

register to the
w rightmost bit to 1

3b. Restore the original value by adding

the Divisor register to the left half of the

Remainder register and place the sum
in the left half of the Remainder register.
Also shift the register to the

left, setting the new rightmost bit to 0

32nd repetition?

No: < 32 repetitions

Yes: 32 repetitions

(Dona

)

University of Pittsburgh

= Let'sdo 0111/0010 (7/2) — unsigned
Hardware design 3
Iteration Divisor

Step Remainder
initial values 0000 0111

0 0010
shift remainder left by 1 0000 1110
remainder = remainder - divisor 1110 1110

1 0010
(remainder<0) = +divisor; shift left; r0=0 0001 1100
remainder = remainder - divisor 1111 1100

2 0010
(remainder<0) = +divisor; shift left; r0=0 0011 1000
remainder = remainder - divisor 0001 1000

3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder - divisor 0001 0001

4 0010
(remainder>0) = shift left; r0=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Exercise sheet

. o Hardware design 3
Iteration Divisor -
Step Remainder

initial values

0
shift remainder left by 1

1

2

3

4

done shift “left half of remainder” right by 1
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Restoring division

= The three hardware designs we saw are based on the notion
of “restoring division”
* At first, attempt to subtract divisor from dividend

* If the result of subtraction is negative — it rolls back by adding divisor
+ This step is called “restoring”

= It's a “trial-and-error” approach; can we do better?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Non-restoring division

= Let’s revisit the restoring division designs
Given remainder R (R<0) after subtraction
By adding divisor D back, we have (R+D)

After shifting the result, we have 2x(R+D)=2xR+2xD

If we subtract the divisor in the next step,
we have 2XR+2XxD-D =2xXR+D

= This is equivalent to
* Left-shifting R by 1 bit and then adding D!

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Example, non-restoring division

= Let's again do 0111/0010 (7/2) — unsigned

Hardware design 3, non-restoring
Iteration Divisor

Step Remainder
initial values 0000 0111

0 0010
shift remainder left by 1 0000 1110
remainder = remainder - divisor 1110 1110

1 0010
(remainder<0) = shift left; r0=0 1101 1100
remainder = remainder + divisor 1111 1100

2 0010
(remainder<0) = shift left; r0=0 1111 1000
remainder = remainder + divisor 0001 1000

3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder - divisor 0001 0001

4 0010
(remainder>0) = shift left; r0=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011

CS/CoE0447:

Computer Organization and Assembly Language

University of Pittsburgh

Exercise sheet

) o Hardware design 3, non-restoring
Iteration Divisor -
Step Remainder

initial values

0
shift remainder left by 1

1

2

3

4

done shift “left half of remainder” right by 1

CS/CoE0447: Computer Organization and Assembly Language

Floating-point (FP) numbers

= Computers need to deal with real numbers
* Fractional numbers (e.g., 3.1416)
* Very small numbers (e.g., 0.000001)
* Very larger numbers (e.g., 2.7596 x 10°)

= Components in an FP number
* (-1)si9nxsignificand (a.k.a. mantisa) x 2exponent
* More bits in significand gives higher accuracy
* More bits in exponent gives wider range

= A case for FP representation standard
* Portability issues
* Improved implementations
— |EEE-754

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

University of Pittsburgh

Format choice issues

Example floating-point numbers (base-10)
* 1.4x102
¢ -20.0 =-2.00x10"

What components do we have?
* Sign
* Significand
¢ Exponent
Representing sign is easy.
Significand is unsigned.
Exponent is a signed integer. What method do we use?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

IEEE 754

A standard for representing FP numbers in computers
* Single precision (32 bits): 8-bit exponent, 23-bit significand
* Double precision (64 bits): 11-bit exponent, 52-bit significand

N-1 N-2 M M-1 0
sign exponent significand (or mantisa)

Leading “1" in significand is implicit (why?)
Exponent is a signed number
» “Biased” format — for easier sorting of FP numbers
* All O's is the smallest, all 1's is the largest
* Bias of 127 for SP and 1023 for DP
Hence, to obtain the actual value of a representation
o (-1)sionx (1#"."#significand)x 2exponent: here “#" is concatenation

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Biased representation

Yet another binary number representation
* Signed number allowed

= 000...000 is the smallest number
= 111...111 is the largest number

= To get the real value, subtract a pre-determined “bias” from
the unsigned evaluation of the bit pattern

= |In other words, representation = value + bias

= Bias for the “exponent” field in IEEE 754
* 127 (SP)
* 1023 (DP)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

IEEE 754 example

= -0.75.,
* Same as -3/4 or -3/2?
* In binary, -11,,0/2%en OF -0.11,,,
* In a normalized form, it's -1.1,,,,% 2"

= In IEEE 754
* Sign bit is 1 — number is negative!
* Significand is 0.1 — the leading 1 is implicit!
* Exponentis -1 —or 126 in biased representation

31 30 23 22 0
1 01111110 1000 000
sign 8-bit exponent 23-bit significand (or mantissa)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

IEEE 754 summary

Single Precision Double Precision Represented Object
(- Exponent | __ Fraction _ _|__Exponent | __Fraction | @ e
o ___|____ S . S 0_______|
H====g===1"" e (R monTrere” T~ —denermetized ——+
|_.._________________.._____________________________________...___________________.l.____;nu.rinb.e;l::______:_______.
|..__J.~_23 — |~ anytbiog |-~ 1x2046_] _ “anywing_ [__ 37 feaMngTeomt |
721 A S HSR 7 ZS VSN WUV AR 7 [7T A
E' 1 non-zero | 2047 | non-zero | 1 NaN (Not a Number) |

CS/CoE0447: Computer Organization and Assembly Language

Denormal number

e=E, -1,fl=0
#00000000# # ### H#HHHHRHHBHRHHHHHH

Smallest normal: 1.0 x 2Emin

CS/CoE0447: Computer Organization and Assembly Language

Below, use denormal: 0.fx 2Emin

University of Pittsburgh

University of Pittsburgh

NaN

= Not a Number

= Result of illegal computation
* 0/0, infinity/infinity, infinity — infinity, ...
* Any computation involving a NaN

- e=E+1,f!=0
o BNV VN ERBRBHRBRBBRBHRBRHHRBHH

= Many NaN's

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Values represented with IEEE 754

Type
Zero
One
Minus One
Smallest denormalized number
"Middle" denormalized number
Largest denormalized number
Smallest normalized number
Largest normalized number
Fuositive infinity
MNegative infinity
Mot a number

* Sign bit can be either 0 or 1.

a
0
1

Sign| Exponent

Q000 0000
0111 1111
0111 1111
0000 0000
0000 0000
0000 0000
Q000 Qoo
11111110
1111111
1111 1111
1111 1111

Significand
000 0000 0000 0000 0000 0000
000 0000 0000 0000 0000 0000
000 0000 0000 0000 0000 0000
000 0000 0000 0000 0000 0001
100 0000 0000 0000 0000 0000
T I O I A U B
000 0000 0000 0000 0000 0000
1111111111111 1111 111
000 0000 0000 0000 0000 0000
000 0000 0000 0000 0000 0000

non Zero

CS/CoE0447: Computer Organization and Assembly Language

Value
0.0
1.0
-10
s B 1B o M g gk 5
97 w9716 1 o 5 g8 w100
+(1-2 By 2 1B 2 g 1gx 10 H
40718 =9 18 % 108
+{1-7%) x 2 =434 10%
+00
—0Q

Mah

University of Pittsburgh
20

FP arithmetic operations

= We want to support four arithmetic functions (+, —, X, /)

= (+, -): Must equalize exponents first. Why?
= (X,/): Multiply/divide significand, add/subtract exponents.

= Use “rounding” when result is not accurate

= Exception conditions
* E.g., Overflow, underflow (what is underflow?)

= Error conditions
* E.g., divide-by-zero

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

21

Overflow and underflow

= Overflow
* The exponent is too large to fit in the exponent field

= Underflow
* The exponent is too small to fit in the exponent field

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

22

FP addition

1. Align binary points

2. Add significands

3. Normalize result

(Example)
0.5, - 0.4375,,,
=1.000,,,%x2"" — 1.110,,,x2°2

CS/CoE0447: Computer Organization and Assembly Language

FP multiplication

1. Compute exponents

2. Multiply significands

3. Normalize result

4. Set sign

(Example)

(1.000,,,,x27")%(-1.110,,,%x22)

two

CS/CoE0447: Computer Organization and Assembly Language

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

2. Add the significands I

—

v

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Overflow or
underflow?

4. Round the significand to the appropriate
number of bits

University of Pittsburgh
23

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum
to get the new biased exponent

2. Multiply the significands

3. Normalize the product if necessary, shifting
/ it right and incrementing the exponent

|

Overflow or
underflow?

4. Round the significand to the appropriate
number of bits

l

No

Still normalized?

5. Set the sign of the product to positive if the
signs of the original operands are the same;
if they differ make the sign negative

University of Pittsburgh
24

Accuracy and rounding

= Goal

* |EEE 754 guarantees that the maximum error is +'4 u.l.p. compared
with infinite precision

* u.l.p. = Units in the Last Place = distance to the next floating-point
value larger in magnitude

= Rounding using extra bits

* Alignment step in the addition algorithm can cause data to be
discarded (shifted out on right)

* Multiplication step

* |EEE 754 defines three types of extra bits: G (guard), R (round), S
(sticky)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

25

Guard bit examples

= Assume 5-bit significand

= Add 1.0000%2° + 1.1111x22

- Multiply 1.0000%2° x 1.1001 x 22

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

26

Rounding modes

IEEE 754 has four rounding modes
* Round to nearest even (default)
* Round towards plus infinity
* Round towards minus infinity
* Round towards 0

= Round bit is calculated to the right of Guard bit

= Sticky bit is used to determine whether there are any 1 bit
truncated below Guard and Round bits

= [t can be shown that “Round to nearest even” minimizes the
mean error introduced by rounding

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
27

Pentium processor divide flaw

= Pentium FP divider algorithm generates multiple bits per step

* FPU uses MSBs of divisor and dividend/remainder to guess next 2 bits
of quotient
* Guess is taken from a lookup table: -2, -1, 0, +1, +2

* Guess is multiplied by divisor and subtracted from remainder to
generate a new remainder

* SRT division (Sweeny, Robertson, and Tocher): Used in most CPUs

= Pentium processor table = 7 bits remainder + 4 bits divisor
= 11 bits, 2" entries

e 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101
from the table

* Fix is just add 5 entries back into the table
 Eventually, it cost Intel $300M

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
28

