
CS/COE0447: Computer Organization
and Assembly Languageand Assembly Language

Chapter 3Chapter 3

Sangyeun ChoSangyeun Cho

Dept. of Computer Science
University of Pittsburgh

Binary divisionBinary division

Dividend = divisor × quotient + remainderq

Given dividend and divisor, we want to obtain quotient (Q)
and remainder (R)and remainder (R)

We will start from our paper & pencil methodp p p

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
2

Hardware design 1Hardware design 1

64 bit64-bit
shift register64-bit

ALU

32-bit
shift register

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
3

Hardware design 2Hardware design 2

32 bit

64 bit

32-bit
ALU

32-bit
shift register

64-bit
shift register

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
4

Hardware design 3Hardware design 3
2. Run the algorithm

1 Place dividend here first1. Place dividend here first

3. Find remainder here

4. Find quotient here

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
5

ExampleExample

Let’s do 0111/0010 (7/2) – unsignedg

Iteration Divisor
Hardware design 3

Step Remainder

i iti l l 0000 0111
0 0010

initial values 0000 0111

shift remainder left by 1 0000 1110

1 0010
remainder = remainder – divisor 1110 1110

(remainder<0) ⇒ +divisor; shift left; r0=0 0001 1100

2 0010
remainder = remainder – divisor 1111 1100

(remainder<0) ⇒ +divisor; shift left; r0=0 0011 1000

3 0010
remainder = remainder – divisor 0001 1000

(remainder>0) ⇒ shift left; r0=1 0011 0001(remainder>0) ⇒ shift left; r0=1 0011 0001

4 0010
remainder = remainder – divisor 0001 0001

(remainder>0) ⇒ shift left; r0=1 0010 0011

done 0010 shift “left half of remainder” right by 1 0001 0011

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
6

Exercise sheetExercise sheet

Iteration Divisor
Hardware design 3

Step Remainder

i iti l l
0

initial values

shift remainder left by 1

1

2

3

4

done shift “left half of remainder” right by 1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
7

Restoring divisionRestoring division

The three hardware designs we saw are based on the notion g
of “restoring division”
• At first, attempt to subtract divisor from dividend
• If the result of subtraction is negative – it rolls back by adding divisorg y g

This step is called “restoring”

It’s a “trial and error” approach; can we do better?It s a trial-and-error approach; can we do better?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
8

Non-restoring divisionNon restoring division

Let’s revisit the restoring division designsg g
• Given remainder R (R<0) after subtraction
• By adding divisor D back, we have (R+D)
• After shifting the result, we have 2×(R+D)=2×R+2×Dg , ()
• If we subtract the divisor in the next step,

we have 2×R+2×D–D =2×R+D

This is equivalent to
• Left-shifting R by 1 bit and then adding D!

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
9

Example, non-restoring divisionExample, non restoring division

Let’s again do 0111/0010 (7/2) – unsignedg g

Iteration Divisor
Hardware design 3, non-restoring

Step Remainder

i iti l l 0000 0111
0 0010

initial values 0000 0111

shift remainder left by 1 0000 1110

1 0010
remainder = remainder – divisor 1110 1110

(remainder<0) ⇒ shift left; r0=0 1101 1100

2 0010
remainder = remainder + divisor 1111 1100

(remainder<0) ⇒ shift left; r0=0 1111 1000

3 0010
remainder = remainder + divisor 0001 1000

(remainder>0) ⇒ shift left; r0=1 0011 0001(remainder>0) ⇒ shift left; r0=1 0011 0001

4 0010
remainder = remainder – divisor 0001 0001

(remainder>0) ⇒ shift left; r0=1 0010 0011

done 0010 shift “left half of remainder” right by 1 0001 0011

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
10

Exercise sheetExercise sheet

Iteration Divisor
Hardware design 3, non-restoring

Step Remainder

i iti l l
0

initial values

shift remainder left by 1

1

2

3

4

done shift “left half of remainder” right by 1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
11

Floating-point (FP) numbersFloating point (FP) numbers

Computers need to deal with real numbers
• Fractional numbers (e.g., 3.1416)
• Very small numbers (e.g., 0.000001)
• Very larger numbers (e.g., 2.7596×109)

Components in an FP number
• (-1)sign×significand (a.k.a. mantisa)×2exponent

• More bits in significand gives higher accuracy• More bits in significand gives higher accuracy
• More bits in exponent gives wider range

A case for FP representation standardA case for FP representation standard
• Portability issues
• Improved implementations
⇒ IEEE-754

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
12

Format choice issuesFormat choice issues

Example floating-point numbers (base-10)p g p
• 1.4×10-2

• -20.0 = -2.00×101

What components do we have?
• Sign

Si ifi d• Significand
• Exponent

Representing sign is easy.
Significand is unsigned.
Exponent is a signed integer. What method do we use?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
13

IEEE 754IEEE 754

A standard for representing FP numbers in computers
• Single precision (32 bits): 8-bit exponent, 23-bit significand
• Double precision (64 bits): 11-bit exponent, 52-bit significand

0M-1N-1 N-2 M

L di “1” i i ifi d i i li it (h ?)

sign exponent significand (or mantisa)

Leading “1” in significand is implicit (why?)
Exponent is a signed number
• “Biased” format – for easier sorting of FP numbers

All 0’ i th ll t ll 1’ i th l t• All 0’s is the smallest, all 1’s is the largest
• Bias of 127 for SP and 1023 for DP

Hence, to obtain the actual value of a representation
(1)sign (1#” ”# i ifi d) 2e ponent h “#” i t ti

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
14

• (-1)sign×(1#”.”#significand)×2exponent: here “#” is concatenation

Biased representationBiased representation

Yet another binary number representation
• Signed number allowed

000…000 is the smallest number
111…111 is the largest number
To get the real value, subtract a pre-determined “bias” from
the unsigned evaluation of the bit patternthe unsigned evaluation of the bit pattern
In other words, representation = value + bias

Bi f th “ t” fi ld i IEEE 754Bias for the “exponent” field in IEEE 754
• 127 (SP)
• 1023 (DP)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
15

IEEE 754 exampleIEEE 754 example

-0.75tenten
• Same as -3/4 or -3/22

• In binary, -11two/22
ten or -0.11two

• In a normalized form, it’s -1.1two×2-1, two

In IEEE 754
Si bit i 1 b i ti !• Sign bit is 1 – number is negative!

• Significand is 0.1 – the leading 1 is implicit!
• Exponent is -1 – or 126 in biased representation

sign 8-bit exponent 23-bit significand (or mantissa)

02231 30 23

1 0 1 1 1 1 1 1 0 1 0 0 0 … 0 0 0

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
16

sign 8-bit exponent 23-bit significand (or mantissa)

IEEE 754 summaryIEEE 754 summary

Single Precision Double Precision Represented Object

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 non zero 0 non zero +/- denormalized 0 non-zero 0 non-zero /
number

1~254 anything 1~2046 anything +/- floating-point
numbers

255 0 2047 0 +/ infinity255 0 2047 0 +/- infinity

255 non-zero 2047 non-zero NaN (Not a Number)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
17

Denormal numberDenormal number

Smallest normal: 1.0×2Emin

Below, use denormal: 0.f×2Emin

 E 1 f ! 0e = Emin–1 , f != 0
#00000000#######################

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
18

NaNNaN

Not a Number
Result of illegal computation
• 0/0, infinity/infinity, infinity – infinity, …
• Any computation involving a NaN• Any computation involving a NaN

e = Emax+1, f != 0
#11111111#######################
Many NaN’s

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
19

Values represented with IEEE 754Values represented with IEEE 754

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
20

FP arithmetic operationsFP arithmetic operations

We want to support four arithmetic functions (+, –, ×, ⁄)

(+, –): Must equalize exponents first. Why?
(× ⁄): Multiply/divide significand add/subtract exponents(×, ⁄): Multiply/divide significand, add/subtract exponents.

Use “rounding” when result is not accurate

Exception conditions
• E.g., Overflow, underflow (what is underflow?)

Error conditions
• E.g., divide-by-zero

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
21

Overflow and underflowOverflow and underflow

Overflow
• The exponent is too large to fit in the exponent field

UnderflowUnderflow
• The exponent is too small to fit in the exponent field

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
22

FP additionFP addition

1 Align binary points1. Align binary points

2. Add significands

(E l)

3. Normalize result

(Example)
0.5ten – 0.4375ten
=1.000two×2-1 – 1.110two×2-2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
23

FP multiplicationFP multiplication

1 Compute exponents1. Compute exponents

2. Multiply significands

3. Normalize result

(Example)
(1 000 ×2-1)×(1 110 ×2-2)

4. Set sign

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
24

(1.000two×2 1)×(-1.110two×2 2)

Accuracy and roundingAccuracy and rounding

Goal
• IEEE 754 guarantees that the maximum error is ±½ u.l.p. compared

with infinite precision
• u.l.p. = Units in the Last Place = distance to the next floating-point

value larger in magnitude

Rounding using extra bitsRounding using extra bits
• Alignment step in the addition algorithm can cause data to be

discarded (shifted out on right)
• Multiplication stepp p
• IEEE 754 defines three types of extra bits: G (guard), R (round), S

(sticky)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
25

Guard bit examplesGuard bit examples

Assume 5-bit significandg

Add 1.0000×20 + 1.1111×2-2

Multiply 1.0000×20 × 1.1001×2-2Multiply 1.0000 2 1.1001 2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
26

Rounding modesRounding modes

IEEE 754 has four rounding modesg
• Round to nearest even (default)
• Round towards plus infinity
• Round towards minus infinityy
• Round towards 0

Round bit is calculated to the right of Guard bitRound bit is calculated to the right of Guard bit
Sticky bit is used to determine whether there are any 1 bit
truncated below Guard and Round bits
It can be shown that “Round to nearest even” minimizes the
mean error introduced by rounding

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
27

Pentium processor divide flawPentium processor divide flaw

Pentium FP divider algorithm generates multiple bits per stepg g p p p
• FPU uses MSBs of divisor and dividend/remainder to guess next 2 bits

of quotient
• Guess is taken from a lookup table: -2, -1, 0, +1, +2
• Guess is multiplied by divisor and subtracted from remainder to

generate a new remainder
• SRT division (Sweeny, Robertson, and Tocher): Used in most CPUs

Pentium processor table = 7 bits remainder + 4 bits divisor
= 11 bits, 211 entries
• 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101

from the table
• Fix is just add 5 entries back into the table
• Eventually, it cost Intel $300M

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
28

