CS/COE0447: Computer Organization and Assembly Language

Chapter 3

Sangyeun Cho

Dept. of Computer Science University of Pittsburgh

Binary division

- Dividend = divisor \times quotient + remainder
- Given dividend and divisor, we want to obtain quotient (Q) and remainder (R)
- We will start from our paper & pencil method

Hardware design 1

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

3

Hardware design 2

Hardware design 3

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

5

Example

Let's do 0111/0010 (7/2) – unsigned

Iteration	Divisor	Hardware design 3		
	Divisor	Step	Remainder	
0	0010	initial values	0000 0111	
0	0010	shift remainder left by 1	0000 1110	
1	0010	remainder = remainder - divisor	1110 1110	
	0010	$(remainder<0) \Rightarrow +divisor; shift left; r0=0$	0001 1100	
2	0010	remainder = remainder - divisor	1111 1100	
		$(remainder<0) \Rightarrow +divisor; shift left; r0=0$	0011 1000	
3	0010	remainder = remainder - divisor	0001 1000	
	0010	$(remainder>0) \Rightarrow shift left; r0=1$	0011 0001	
4	0010	remainder = remainder - divisor	0001 0001	
	0010	$(remainder>0) \Rightarrow shift left; r0=1$ 0010 0011		
done	0010	shift "left half of remainder" right by 1	0001 0011	

Exercise sheet

Iteration	Divisor	Hardware design 3		
	DIVISOI	Step	Remainder	
0		initial values		
U		shift remainder left by 1		
1				
1				
2				
3				
4				
done		shift "left half of remainder" right by 1		

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

7

Restoring division

- The three hardware designs we saw are based on the notion of "restoring division"
 - · At first, attempt to subtract divisor from dividend
 - If the result of subtraction is negative it rolls back by adding divisor
 - This step is called "restoring"
- It's a "trial-and-error" approach; can we do better?

Non-restoring division

- Let's revisit the restoring division designs
 - Given remainder R (R<0) after subtraction
 - By adding divisor D back, we have (R+D)
 - After shifting the result, we have $2\times(R+D)=2\times R+2\times D$
 - If we subtract the divisor in the next step, we have 2×R+2×D-D =2×R+D
- This is equivalent to
 - Left-shifting R by 1 bit and then adding D!

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

c

Example, non-restoring division

Let's again do 0111/0010 (7/2) – unsigned

Iteration	Divisor	Hardware design 3, non-restoring			
	DIVISOI	Step	Remainder		
0	0010	initial values	0000 0111		
U	0010	$Step \qquad Remain \\ initial values \qquad 0000 0 \\ shift remainder left by 1 \qquad 0000 1 \\ remainder = remainder - divisor \qquad 1110 1 \\ (remainder<0) \Rightarrow shift left; r0=0 \qquad 1101 1 \\ remainder = remainder + divisor \qquad 1111 1 \\ (remainder<0) \Rightarrow shift left; r0=0 \qquad 1111 1 \\ remainder = remainder + divisor \qquad 0001 1 \\ (remainder>0) \Rightarrow shift left; r0=1 \qquad 0011 0 \\ remainder = remainder - divisor \qquad 0001 0 \\ \hline$			
1	0010	remainder = remainder - divisor	1110 1110		
	0010	$(remainder<0) \Rightarrow shift left; r0=0$ 1101			
2	0010	remainder = remainder + divisor	1111 1100		
	0010	$(remainder<0) \Rightarrow shift left; r0=0$	1111 1000		
2	0010	remainder = remainder + divisor	0001 1000		
3	0010				
4	0010	remainder = remainder - divisor	0001 0001		
	0010	$(remainder>0) \Rightarrow shift left; r0=1$ 0010 0011			
done	0010	shift "left half of remainder" right by 1	0001 0011		

Exercise sheet

Iteration	Divisor	Hardware design 3, non-restoring		
		Step	Remainder	
		initial values		
0		shift remainder left by 1		
1				
2				
3				
4			·	
			·	
done		shift "left half of remainder" right by 1	·	

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

11

Floating-point (FP) numbers

- Computers need to deal with real numbers
 - Fractional numbers (e.g., 3.1416)
 - Very small numbers (e.g., 0.000001)
 - Very larger numbers (e.g., 2.7596×10⁹)
- Components in an FP number
 - (-1)^{sign} × significand (a.k.a. mantisa) × 2^{exponent}
 - More bits in significand gives higher accuracy
 - More bits in exponent gives wider range
- A case for FP representation standard
 - Portability issues
 - Improved implementations
 - ⇒ IEEE-754

Format choice issues

- Example floating-point numbers (base-10)
 - 1.4×10⁻²
 - $-20.0 = -2.00 \times 10^{1}$
- What components do we have?
 - Sign
 - Significand
 - Exponent
- Representing sign is easy.
- Significand is unsigned.
- Exponent is a signed integer. What method do we use?

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

13

IEEE 754

- A standard for representing FP numbers in computers
 - Single precision (32 bits): 8-bit exponent, 23-bit significand
 - Double precision (64 bits): 11-bit exponent, 52-bit significand

- Leading "1" in significand is implicit (why?)
- Exponent is a signed number
 - "Biased" format for easier sorting of FP numbers
 - All 0's is the smallest, all 1's is the largest
 - Bias of 127 for SP and 1023 for DP
- Hence, to obtain the actual value of a representation
 - (-1)^{sign}×(1#"."#significand</sup>)×2^{exponent}: here "#" is concatenation

Biased representation

- Yet another binary number representation
 - Signed number allowed
- 000...000 is the smallest number
- 111...111 is the largest number
- To get the real value, subtract a pre-determined "bias" from the unsigned evaluation of the bit pattern
- In other words, representation = value + bias
- Bias for the "exponent" field in IEEE 754
 - 127 (SP)
 - 1023 (DP)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

15

IEEE 754 example

- -0.75_{ten}
 - Same as -3/4 or -3/2²
 - In binary, -11_{two}/2²_{ten} or -0.11_{two}
 - In a normalized form, it's -1.1_{two}×2⁻¹
- In IEEE 754
 - Sign bit is 1 number is negative!
 - Significand is 0.1 the leading 1 is implicit!
 - Exponent is -1 or 126 in biased representation

IEEE 754 summary

	Single Precision		Double Precision		Represented Object
]	Exponent	Fraction	Exponent	Fraction	
	0	0	0	0	0
	0	non-zero	0	non-zero	
- -	1~254	anything	1~2046	_anything	+/- floating-point numbers
	255	0	2047	0	±/-infinity
	255	non-zero	2047	non-zero	NaN (Not a Number)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

17

Denormal number

- Smallest normal: 1.0×2^{Emin}
- Below, use denormal: 0.f×2^{Emin}
- $e = E_{min} 1$, f! = 0

NaN

- Not a Number
- Result of illegal computation
 - 0/0, infinity/infinity, infinity infinity, ...
 - Any computation involving a NaN
- $e = E_{max} + 1$, f! = 0
- Many NaN's

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

19

Values represented with IEEE 754

Туре	Sign	Exponent	Significand	Value
Zero	0	0000 0000	000 0000 0000 0000 0000 0000	0.0
One	0	0111 1111	000 0000 0000 0000 0000 0000	1.0
Minus One	1	0111 1111	000 0000 0000 0000 0000 0000	-1.0
Smallest denormalized number	*	0000 0000	000 0000 0000 0000 0000 0001	$\pm 2^{-23} \times 2^{-126} = \pm 2^{-149} \approx \pm 1.4 \times 10^{-45}$
"Middle" denormalized number	*	0000 0000	100 0000 0000 0000 0000 0000	$\pm 2^{-1} \times 2^{-126} = \pm 2^{-127} \approx \pm 5.88 \times 10^{-39}$
Largest denormalized number	*	0000 0000	111 1111 1111 1111 1111 1111	$\pm (1-2^{-23}) \times 2^{-126} \approx \pm 1.18 \times 10^{-38}$
Smallest normalized number	*	0000 0001	000 0000 0000 0000 0000 0000	±2 ⁻¹²⁶ ≈ 1.18 × 10 ⁻³⁸
Largest normalized number	*	1111 1110	111 1111 1111 1111 1111 1111	$\pm (1-2^{-24}) \times 2^{128} \approx \pm 3.4 \times 10^{38}$
Positive infinity	0	1111 1111	000 0000 0000 0000 0000 0000	+∞
Negative infinity	1	1111 1111	000 0000 0000 0000 0000 0000	$-\infty$
Not a number	*	1111 1111	non zero	NaN
* Sign bit can be either 0 or 1.				

FP arithmetic operations

- We want to support four arithmetic functions $(+, -, \times, /)$
- (+, -): Must equalize exponents first. Why?
- (×,/): Multiply/divide significand, add/subtract exponents.
- Use "rounding" when result is not accurate
- Exception conditions
 - E.g., Overflow, underflow (what is underflow?)
- Error conditions
 - E.g., divide-by-zero

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

η.

Overflow and underflow

- Overflow
 - The exponent is too large to fit in the exponent field
- Underflow
 - The exponent is too small to fit in the exponent field

Accuracy and rounding

Goal

- IEEE 754 guarantees that the maximum error is $\pm \frac{1}{2}$ u.l.p. compared with infinite precision
- u.l.p. = Units in the Last Place = distance to the next floating-point value larger in magnitude

Rounding using extra bits

- Alignment step in the addition algorithm can cause data to be discarded (shifted out on right)
- Multiplication step
- IEEE 754 defines three types of extra bits: G (guard), R (round), S (sticky)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

25

Guard bit examples

- Assume 5-bit significand
- Add $1.0000 \times 2^0 + 1.11111 \times 2^{-2}$
- Multiply 1.0000×2⁰ × 1.1001×2⁻²

Rounding modes

- IEEE 754 has four rounding modes
 - Round to nearest even (default)
 - Round towards plus infinity
 - Round towards minus infinity
 - Round towards 0
- Round bit is calculated to the right of Guard bit
- Sticky bit is used to determine whether there are any 1 bit truncated below Guard and Round bits
- It can be shown that "Round to nearest even" minimizes the mean error introduced by rounding

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

27

Pentium processor divide flaw

- Pentium FP divider algorithm generates multiple bits per step
 - FPU uses MSBs of divisor and dividend/remainder to guess next 2 bits of quotient
 - Guess is taken from a lookup table: -2, -1, 0, +1, +2
 - Guess is multiplied by divisor and subtracted from remainder to generate a new remainder
 - SRT division (Sweeny, Robertson, and Tocher): Used in most CPUs
- Pentium processor table = 7 bits remainder + 4 bits divisor
 = 11 bits, 2¹¹ entries
 - 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from the table
 - Fix is just add 5 entries back into the table
 - Eventually, it cost Intel \$300M