CS/COE0447: Computer Organization and Assembly Language

Chapter 3

Sangyeun Cho

Dept. of Computer Science University of Pittsburgh

Binary division

- Dividend $=$ divisor \times quotient + remainder
- Given dividend and divisor, we want to obtain quotient (Q) and remainder (R)
- We will start from our paper \& pencil method

Hardware design 1

Hardware design 2

Hardware design 3

Example

- Let's do 0111/0010 (7/2) - unsigned

Iteration	Divisor	Hardware design 3	
		Step	Remainder
0	0010	initial values	00000111
		shift remainder left by 1	00001110
1	0010	remainder $=$ remainder - divisor	11101110
		(remainder<0) \Rightarrow +divisor; shift left; $\mathrm{r} 0=0$	00011100
2	0010	remainder = remainder - divisor	11111100
		(remainder <0) \Rightarrow +divisor; shift left; $\mathrm{r} 0=0$	00111000
3	0010	remainder $=$ remainder - divisor	00011000
		(remainder>0) \Rightarrow shift left; $\mathrm{r} 0=1$	00110001
4	0010	remainder $=$ remainder - divisor	00010001
		(remainder >0) \Rightarrow shift left; $\mathrm{r} 0=1$	00100011
done	0010	shift "left half of remainder" right by 1	00010011

Exercise sheet

Iteration	Divisor	Hardware design 3	
		Step	Remainder
0	1	initial values	
		shift remainder left by 1	
1			
3			
done			

Restoring division

- The three hardware designs we saw are based on the notion of "restoring division"
- At first, attempt to subtract divisor from dividend
- If the result of subtraction is negative - it rolls back by adding divisor - This step is called "restoring"
- It's a "trial-and-error" approach; can we do better?

Non-restoring division

- Let's revisit the restoring division designs
- Given remainder $R(R<0)$ after subtraction
- By adding divisor D back, we have ($R+D$)
- After shifting the result, we have $2 \times(R+D)=2 \times R+2 \times D$
- If we subtract the divisor in the next step, we have $2 \times R+2 \times D-D=2 \times R+D$
- This is equivalent to
- Left-shifting R by 1 bit and then adding D !

Example, non-restoring division

- Let's again do 0111/0010 (7/2) - unsigned

Iteration	Divisor	Hardware design 3, non-restoring	
		Step	Remainder
0	0010	initial values	00000111
		shift remainder left by 1	00001110
1	0010	remainder = remainder - divisor	11101110
		(remainder<0) \Rightarrow shift left; $\mathrm{r} 0=0$	11011100
2	0010	remainder $=$ remainder + divisor	11111100
		(remainder<0) \Rightarrow shift left; $\mathrm{r} 0=0$	11111000
3	0010	remainder $=$ remainder + divisor	00011000
		(remainder>0) \Rightarrow shift left; $\mathrm{r} 0=1$	00110001
4	0010	remainder $=$ remainder - divisor	00010001
		(remainder>0) \Rightarrow shift left; $\mathrm{r} 0=1$	00100011
done	0010	shift "left half of remainder" right by 1	00010011

Exercise sheet

Iteration	Divisor	Hardware design 3, non-restoring	
		Step	Remainder
0		initial values	
		shift remainder left by 1	
1			
2			
3			
4			
done		shift "left half of remainder" right by 1	

Floating-point (FP) numbers

- Computers need to deal with real numbers
- Fractional numbers (e.g., 3.1416)
- Very small numbers (e.g., 0.000001)
- Very larger numbers (e.g., 2.7596×10^{9})
- Components in an FP number
- $(-1)^{\text {sign }} \times$ significand (a.k.a. mantisa) $\times 2^{\text {exponent }}$
- More bits in significand gives higher accuracy
- More bits in exponent gives wider range
- A case for FP representation standard
- Portability issues
- Improved implementations
\Rightarrow IEEE-754

Format choice issues

- Example floating-point numbers (base-10)
- 1.4×10^{-2}
- $-20.0=-2.00 \times 10^{1}$
- What components do we have?
- Sign
- Significand
- Exponent
- Representing sign is easy.
- Significand is unsigned.
- Exponent is a signed integer. What method do we use?

IEEE 754

- A standard for representing FP numbers in computers
- Single precision (32 bits): 8-bit exponent, 23-bit significand
- Double precision (64 bits): 11-bit exponent, 52-bit significand

- Leading " 1 " in significand is implicit (why?)
- Exponent is a signed number
- "Biased" format - for easier sorting of FP numbers
- All 0's is the smallest, all 1's is the largest
- Bias of 127 for SP and 1023 for DP
- Hence, to obtain the actual value of a representation
- $(-1)^{\operatorname{sign}} \times\left(1 \#^{\prime \prime}\right.$." \#significand $) \times 2^{\text {exponent }}$: here "\#" is concatenation

Biased representation

- Yet another binary number representation
- Signed number allowed
- 000... 000 is the smallest number
- $111 \ldots 111$ is the largest number
- To get the real value, subtract a pre-determined "bias" from the unsigned evaluation of the bit pattern
- In other words, representation = value + bias
- Bias for the "exponent" field in IEEE 754
- 127 (SP)
- 1023 (DP)

IEEE 754 example

- $-0.75_{\text {ten }}$
- Same as $-3 / 4$ or $-3 / 2^{2}$
- In binary, $-11_{\text {twd }} / 2^{2}$ ten or $-0.11_{\text {two }}$
- In a normalized form, it's $-1.1_{\text {two }} \times 2^{-1}$
- In IEEE 754
- Sign bit is 1 - number is negative!
- Significand is 0.1 - the leading 1 is implicit!
- Exponent is -1 - or 126 in biased representation

31	30				
1	01111110	1000	\ldots	000	
sign	8-bit exponent		23-bit significand (or mantissa)		

IEEE 754 summary

Single Precision		Double Precision		Represented Object
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
------	non-zero	0	non-zero	rf-denormalit number
$1-$	$=-$	1~20	anythi	+7 - floāing-point - пumbers
25	-	20		
--- 255	non-zero	2047	non-zero	Nañ ($\overline{\text { Not }}$ a $\overline{\text { Number }}$)

Denormal number

- Smallest normal: $1.0 \times 2^{\text {Emin }}$
- Below, use denormal: $0 . f \times 2^{\text {Emin }}$
- $e=E_{\text {min }}-1, f!=0$
- \#00000000\#

NaN

- Not a Number
- Result of illegal computation
- 0/0, infinity/infinity, infinity - infinity, ...
- Any computation involving a NaN
- $e=E_{\max }+1, f!=0$
- \#11111111\#
- Many NaN's

Values represented with IEEE 754

| Type | Sign | Exponent | Significand | Value |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Zero | 0 | 00000000 | 00000000000000000000000 | 0.0 |
| One | 0 | 01111111 | 00000000000000000000000 | 1.0 |
| Minus One | 1 | 01111111 | 00000000000000000000000 | -1.0 |
| Smallest denormalized number | $*$ | 00000000 | 00000000000000000000001 | $\pm 2^{-23} \times 2^{-126}= \pm 2^{-149} \approx \pm 1.4 \times 10^{-45}$ |
| "Middle" denormalized number | $*$ | 00000000 | 10000000000000000000000 | $\pm 2^{-1} \times 2^{-126}= \pm 2^{-127} \approx \pm 5.88 \times 10^{-39}$ |
| Largest denormalized number | $*$ | 00000000 | 11111111111111111111111 | $\pm\left(1-2^{-23}\right) \times 2^{-126} \approx \pm 1.18 \times 10^{-38}$ |
| Smallest normalized number | $*$ | 00000001 | 00000000000000000000000 | $\pm 2^{-126} \approx 1.18 \times 10^{-38}$ |
| Largest normalized number | $*$ | 11111110 | 11111111111111111111111 | $\pm\left(1-2^{-24}\right) \times 2^{128} \approx \pm \pm 3.4 \times 10^{38}$ |
| Positive infinity | 0 | 11111111 | 00000000000000000000000 | $+\infty$ |
| Negative infinity | 1 | 11111111 | 00000000000000000000000 | $-\infty$ |
| Not a number | $*$ | 11111111 | non zero | $N a N$ |
| *Sign bit can be either 0 or 1. | | | | |

FP arithmetic operations

- We want to support four arithmetic functions (+, -, $\times, /$)
- (+, -): Must equalize exponents first. Why?
- ($\times, /$): Multiply/divide significand, add/subtract exponents.
" Use "rounding" when result is not accurate
- Exception conditions
- E.g., Overflow, underflow (what is underflow?)
- Error conditions
- E.g., divide-by-zero

Overflow and underflow

- Overflow
- The exponent is too large to fit in the exponent field
- Underflow
- The exponent is too small to fit in the exponent field

FP addition

$$
\begin{aligned}
& \text { (Example) } \\
& 0.5_{\mathrm{ten}}-0.4375_{\mathrm{ten}} \\
& =1.000_{\mathrm{two}} \times 2^{-1}-1.110_{\mathrm{two}} \times 2^{-2}
\end{aligned}
$$

Accuracy and rounding

- Goal
- IEEE 754 guarantees that the maximum error is $\pm 1 / 2$ u.l.p. compared with infinite precision
- u.l.p. $=$ Units in the Last Place $=$ distance to the next floating-point value larger in magnitude
- Rounding using extra bits
- Alignment step in the addition algorithm can cause data to be discarded (shifted out on right)
- Multiplication step
- IEEE 754 defines three types of extra bits: G (guard), R (round), S (sticky)

Guard bit examples

- Assume 5-bit significand
- Add $1.0000 \times 2^{0}+1.1111 \times 2^{-2}$
- Multiply $1.0000 \times 2^{0} \times 1.1001 \times 2^{-2}$

Rounding modes

- IEEE 754 has four rounding modes
- Round to nearest even (default)
- Round towards plus infinity
- Round towards minus infinity
- Round towards 0
- Round bit is calculated to the right of Guard bit
- Sticky bit is used to determine whether there are any 1 bit truncated below Guard and Round bits
- It can be shown that "Round to nearest even" minimizes the mean error introduced by rounding

Pentium processor divide flaw

- Pentium FP divider algorithm generates multiple bits per step
- FPU uses MSBs of divisor and dividend/remainder to guess next 2 bits of quotient
- Guess is taken from a lookup table: $-2,-1,0,+1,+2$
- Guess is multiplied by divisor and subtracted from remainder to generate a new remainder
- SRT division (Sweeny, Robertson, and Tocher): Used in most CPUs
- Pentium processor table $=7$ bits remainder +4 bits divisor $=11$ bits, 2^{11} entries
- 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from the table
- Fix is just add 5 entries back into the table
- Eventually, it cost Intel \$300M

