Seminar Course - Primary focus will be *memory systems*, broadly interpreted. - Any aspect is "fair game" for the course. - Not a lot of background. Most are senior and have background. If yu don't have the background, do extra reading, talk to others. - This is your course! - What you want to do, is what we will do. - What you put into it, is what you'll get out of it. - Seminar != Lecture course - We read papers, discuss results, innovate, and experiment. - I'm also a participant, but providing some degree of direction. # Requirements - Reading and presenting papers, discussing, doing a project - Letter grade vs. Satisfactory/Not-satisfactory - Participation (30%, 50%) - Presentations (30%, 50%) - Project (40%) - Reading 2-4 papers per week; will depend on how quickly we discuss papers (e.g., 6 page DAC vs. 40 page TACO journal) - ((#weeks 1) * papers/week) / (participants 1) = #presentations - Papers selected by you (this is your course!) - I retain line item veto power. ☺ - We want top notch, important work for discussion. | Dogwigomonto | | |---|---| | Requirements • Readings | | | We will all suggest & then decide papers to read. Select first set next week, then refine later. You are expected to read every assigned paper each week. | | | A review (short) will be required; 24 hours before lecture. See web site for a review form (childers/CS3410) | | | Presentations You can use them, if available online. Otherwise, you will need to make one. You can "cut" from the paper | | | to avoid drawing figures. — Target: 30 minutes + 10-20 minutes discussion — Discussion is a critique of the work. Let's aim for positive, but look for shortcomings that might led to exciting new ideas. | | | | | | | | | | 1 | | Requirements | | | Projects Oriented around some aspect of memory I will suggest projects. You are not required to do my suggestions, but | | | you will need to make a proposal for alternatives. • Proposal | | | Develop the suggestion into a) challenges, b) approaches, c) plan Development (doing the project) Status report weekly | | | Presentation end of semesterIf you propose it, it's accepted, you do it, then A. | | | | | | | | | | | | | | | Schedule • Santiago's simulator (on Thursday) | | | On Thursday, identify 3-4 papers you find "interesting". Only look at the abstract & conclusion to judge. Learn to do this! | | | - Be prepared to say why you selected something - Bring your list! We'll decide on Thursday! • Places to look for good papers | | | ISCA, MICRO, HPCA, ACM TACO, PACT, DAC, DATE, NVMW, IDEM, IEEE TC, you'll also find good papers in "odd" places, such as USENIX ATC, OSDI, EuroSys, VLDB, etc memory is everywhere!!! For now, just look for "interesting". We may winnow list | | | down to a set of topics. We'll see. • Starting next Tuesday, we will present/read. | | | We may not meet every lecture, particularly later in the
semester (projects). You may meet when I'm traveling! | | | Custom Design (Specialization) Implications to Computer Systems Research | | | | |---|---|--|--| | | | | | | The Trends | _ | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | The Trends | | | | | Noore's Law: Doubling transistors, every two years | # And Many More... Parallelism Heterogeneity Customization Vertical stacking (3D) **Memory** + compute (Near data computation) Alternative *memory* technologies Etc. ### And Many More... Parallelism Hete Ver Mei Alte Etc. #### A Selected Few General Implications Burden & metrics shift Dynamic, unanticipated landscape Agility, Flexibility and Legacy (Hello, EDA. Meet, CSR.) # Implications: Burden & Metrics Shift - Software delivers power, performance, reliability - Parallel, heterogeneous, custom: SW must exploit it to be beneficial. - $\,-\,$ Careful tuning: More customization, the more important. - User* oriented utility ("Apple Effect") - **Power**: Judge decisions as benefit versus cost - Quality of service: Just enough at lowest cost to achieve experience - Reliability: Thermal, power, operating conditions - New functionality: MEMS first-class differentiator - Accelerometers - Digital light projector - Pressure sensor - Bio/chem sensors, etc. * "User" may be "other computer", "device" | Implications: Dynamism Everywhere | | |---|---| | Uncertainty in execution: Intentional & Unintentional Sea of resources (Intentional) | | | Easier, quicker design in more domains (beyond big volume) More specialization in each domain (e.g., Amazon vs. Facebook) | | | Shorter timelines, more design spinsRuntime variability (Unintentional) | | | Obey thermal design point: Throttling, activation/de-activation Selection of current active resources (overheads, best choices) | | | Reliability: Thermal induced failure, recovery Opaque programming Hardware design may not be transparent (and probably shouldn't be) | | | Portability across different designs Shared accelerators (not the norm today!) | | | At many points: Processor, memory, storage, & network | | | | | | | | | | _ | | Implications: Agility, Flexibility, Legacy | | | More than "just an application" | | | Both program and specification of design Retain agnostic viewpoint – not everything will be custom | | | CommunicationSystem software must ride along too | | | System software requires customization Equally difficult challenge for software | | | Ease correct integration and composition of new resource
management, partitioning and mapping algorithms Hierarchical and coordinated responsibilities | | | Legacy foundation Facilitate transition: Can't throw away the investment | | | Use accelerators: Give up some opportunity, utilization | | | | | | | | | | | | Attributes of Future Systems (Possible?) | | | | | | Intention of task & automated generation (program+design) Communication (e.g., near data computation) | | | Dynamic continuous binding | | | Deep monitor, control, coordination | | | Composed, extendable system software | | | | | | | | | Summary: Research Challenges | | |---|---| | Abstract, express, expose customization opportunities | | | Productivity, ease, managing complexity, & design cost Agnostic SW with custom, multiple hardware instantiation Methodologies, DSLs, Program/Chip generators/optimizers, APIs | | | Programming and runtime paradigms Highly tuned software to custom hardware Just-in-time mapping (JIM): dynamic, continuous, context | | | Resource management: Cooperative, across layers & across time Communication Custom system software (embodying paradigms) | | | Extensible & generated to new hardware customizations Optimize & strip away abstractions when instantiated System software in design flow: Modeling, verify | | | (Legacy software is reality. Utilize and support.) | | | | | | | | | CS 3410 Advanced Computer Architecture | | | | | | Topic: Memory Sub-system Design! A Renaissance period! - Shifting away from processor to memory (power/performance) - Experimental methodology – sound science; with OCCAM | | | - Experimental methodology - sound science, with occasion | | | | | | | | | | | | | • | | | | | CS 3410 Advanced Computer Architecture | | | • | | | Topic: Memory Sub-system Design! A Renaissance period! - Shifting away from processor to memory (power/performance) - Experimental methodology – sound science; with OCCAM | | | Increasing capacity, bandwidth (the rat race) Main memory energy/power consumption | | | DRAM scaling is coming to an end. RIP. | | | | | | | | # CS 3410 Advanced Computer Architecture Topic: Memory Sub-system Design! A Renaissance period! Shifting away from processor to memory (power/performance) - Experimental methodology - sound science; with OCCAM • Increasing capacity, bandwidth (the rat race) Multi-core: Core counts are ever increasing - Changing applications: Data intensive ("big data", analytics) - Consolidation: GPGPU, Cloud/Virtualization, MPSoC · Main memory energy/power consumption • DRAM scaling is coming to an end. RIP. CS 3410 Advanced Computer Architecture Topic: Memory Sub-system Design! A Renaissance period! - Shifting away from processor to memory (power/performance) - Experimental methodology - sound science; with OCCAM • Increasing capacity, bandwidth (the rat race) • Main memory energy/power consumption - Processors are relatively energy efficient - long term focus - Capacity, refresh increasing, leading to more energy consumption - Idleness may be wasteful - sparse data in applications Upwards of 50% of total server power • DRAM scaling is coming to an end. RIP. CS 3410 Advanced Computer Architecture Topic: Memory Sub-system Design! A Renaissance period! Shifting away from processor to memory (power/performance) Experimental methodology – sound science; with OCCAM • Increasing capacity, bandwidth (the rat race) • Main memory energy/power consumption · DRAM scaling is coming to an end. RIP. "No reliable way known to scale below 22nm". ITRS. - Scaling has driven memory capacity increases but it's ending? Cap needs to be large enough to sense correctly/reliably Big enough access transistor for low leakage/high retention | CS 3410 Advanced Computer Architecture | | |--|---| | | | | Topic: Memory Sub-system Design! A Renaissance period! | | | Shifting away from processor to memory (power/performance) Experimental methodology – sound science; with OCCAM | | | | | | Moving away from DRAM for many reasons — Capacity limits of scaling, number of DIMMs, etc. | | | Consumes significant power due to leakage and refresh End of reliable operation? | | | Clearly, we'd prefer NOT to move away from DRAM. | | | But can we fix DRAM, or find alternatives to transition? | | | | | | | | | | | | | | | | | | CS 3410 Advanced Computer Architecture | | | | | | Emerging technologies New bit cell designs (rather, old is the new new): PCM, STT | | | Near data computation (in-memory computation) | | | Tiered, network-attached memory Storage class memory (persistence at highest level of hierarchy) | | | Decoupling main memory from processor (e.g., HMC) GPGPU high bandwidth (e.g., high bandwidth memory, HBM) | | | • Let's look at an example. | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | The End | | | | | | Email: childers@cs.pitt.edu | | | Web: http://www.cs.pitt.edu/~childers | | | | - | | | |