
73

Single vs. Multi-cycle Implementation

•  Single cycle design is simple
•  But it’s inefficient
•  Why?

–  All instructions have same clock cycle length -
they all take the same amount of time regardless
of what they actually do

•  Clock cycle determined by longest path
–  Load: uses IM, RF, ALU, DM, RF in sequence

•  But others may be shorter
–  R-type (arithmetic): use IM, RF, ALU, RF

74

Single Cycle: Load Word

75

Single Cycle: Load Word

76

Single vs. Multi-cycle Implementation

•  Multicycle: Instructions take several faster cycles
•  For this simple version, the multi-cycle

implementation could be as much as 1.27 times
faster (for a typical instruction mix)

•  Suppose we had floating point operations
–  Floating point has very high latency
–  E.g., floating-point multiply may be 16 ns vs

integer add may be 2 ns
–  So, clock cycle constrained by 16 ns of FP

•  Suppose a program doesn’t do ANY floating point?
–  Performance penalty is too big to tolerate

77

Multi-cycle Implementation

•  Single memory unit (I and D), single ALU
•  Several temporary registers (IR, MDR, A, B, ALUOut)
•  Temporaries hold output value of element so the

output value can be used on subsequent cycle
•  Values needed by subsequent instruction stored in

programmer visible state (memory, RF)

78

A single ALU

•  Single ALU must accomodate all inputs that used to
go to three different ALUs in the single cycle
implementation

1. Multiplexor on first input to ALU to select A register
(from RF) or the PC

2. Multiplexor on second input to ALU to select from

the constant 4 (PC increment), sign-extended value,
shifted offset field, and RF input

•  Trade-off: Additional multiplexors (and time) but only

a single ALU since it can be shared across cycles

79

Multi-cycle Datapath with Control

•  Datapath with additional muxes, temporary registers,
and new control signals

•  Most temporaries (except IR) are updated on every
cycle, so no write control is required (always write)

80

Multi-cycle Steps - Instruction Fetch

•  Instruction fetch
IR = Memory[PC];
PC = PC + 4;

•  Operation
–  Send PC to memory as the address
–  Read instruction from memory
–  Write instruction into IR for use on next cycle
–  Increment PC by 4

•  Uses ALU in this first cycle
•  Set control signals to send PC and constant 4 to ALU

81

Multi-cycle Steps - Instruction Decode

•  Don’t yet know what instruction is
–  Decode the instruction concurrently with RF read
–  Optimistically read registers
–  Optimistically compute branch target
–  We’ll select the right answer on next cycle

•  Decode and Register File Read
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

82

Multi-cycle Steps - Execution

•  Operation varies based on instruction decode

•  Memory reference:
ALUOut = A + sign-extend(IR[15-0]);

•  Arithmetic-logical instruction:
ALUOut = A op B;

•  Branch:
if (A == B) PC = ALUOut;

•  Jump:
PC = PC[31-28] || (IR[25-0] << 2)

83

Multi-cycle Steps - Memory / Completion

•  Load/store accesses memory or arithmetic writes
result to the register file

•  Memory reference:
MDR = Memory[ALUOut]; (load)
or
Memory[ALUOut] = B; (store)

•  Arithmetic-logical instruction:
Reg[IR[15-11]] = ALUOut;

84

Multi-cycle Steps - Read completion

•  Finish a memory read by writing read value into the
register file

•  Load operation:
Reg[IR[20-16]] = MDR;

85

Multi-cycle Steps

•  Instructions always do the first two steps

•  Branch can finish in the third step
•  Arithmetic-logical can finish in the fourth step
•  Stores can finish in the fourth step
•  Loads finish in the fifth step

 Instruction Number of cycles
 Branch / Jump 3
 Arithmetic-logical 4
 Stores 4
 Loads 5

86

Multi-cycle vs. Single cycle?

•  Why does it help?
•  Let’s consider a simple example.... in class example

88

Multi-cycle Instruction Exeution

Branch
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !ALUout=PC+(sign-extend(IR[15-0])<<2);!
Cycle2: !if A=B PC=ALUout;!

Arithmetic
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !A=Reg[IR[25-21]]; B=Reg[IR[20-16]];!
Cycle2: !ALUout = A op B;!
Cycle3: !Reg[IR[15-11]]=ALUout;!

89

Multi-cycle Instruction Exeution

Load
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !A=Reg[IR[25-21]];!
Cycle2: !ALUout = A + sign-extend(IR[15-0]);!
Cycle3: !MDR=Memory[ALUout];!
Cycle4: !Reg[IR[20-16]]=MDR;!

90

Multi-cycle Datapath with Control

91

Multi-cycle Control

memory
arithmetic

branch

ju
m

p

store lo
ad

Finite State Machine

each cycle: advance one state
in a state: set datapath control
make decision based on opcode
control is different after Decode

93

Multi-cycle Control

•  How are the control signals set in each state?
•  What are the transitions between states? (i.e., what

state is next?)
•  Control signals

–  IorD, MemRead, MemWrite, IRWrite, RegDst
–  MemtoReg, RegWrite, ALUSrcA
–  ALUSrcB, ALUOp
–  PCWrite

•  Transitions from Decode based on Opcode
•  Transitions from Eff. Addr. happen on load/store

94

Multi-cycle Control

•  What are the control signals in each state for instrs:
–  Arithmetic
–  Load
–  Store
–  Branch
–  Jump

95

Control for each instruction type?

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) STATE 3 STATE 4 STATE 5
IorD
MemRead
MemWrite
IRWrite
RegDst
MemToReg
RegWrite
ALUSrcA
ALUSrcB
ALUOp
PCWrite

97

Control for addition (arithmetic)

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) EXE ALU(3) WB ALU(4) STATE 5
IorD 0 X X X
MemRead 1 0 0 0
MemWrite 0 0 0 0
IRWrite 1 0 0 0
RegDst X X X 1
MemToReg X X X 0
RegWrite 0 0 0 1
ALUSrcA 0 0 1 X
ALUSrcB 01 11 00 X
ALUOp 00 00 10 X
PCWrite 1 0 0 0

98

Control for addition (load)

STATE(CYCLE NUMBER, ADVANCE EACH CYCLE)
CONTROL FETCH(1) DECODE(2) EFF AD(3) MEM RD(4) WB MEM(5)
IorD 0 X X 1 X
MemRead 1 0 0 1 0
MemWrite 0 0 0 0 0
IRWrite 1 0 0 0 0
RegDst X X X X 0
MemToReg X X X X 1
RegWrite 0 0 0 0 1
ALUSrcA 0 0 1 X X
ALUSrcB 01 11 10 X X
ALUOp 00 00 10 X X
PCWrite 1 0 0 0 0

99

Finite state machine (FSM)

Need a way to specify control per cycle
FSM: Tracks “step of execution” to generate control signals
Implementation: Generally, “hardwired” or “microcode”

100

Traffic light control example

•  Two states
–  NSgreen: green light on North-South road
–  EWgreen: green light on East-West road

•  Sensors (inputs) in each lane to detect car
–  NScar: a car in either the north or south bound lanes
–  EWcar: a car in either the east or west bound lanes

•  Control signals (outputs) to each light
–  NSlite: 0 is red, 1 is green
–  EWlite: 0 is red, 1 is green

•  Current state goes for 30 seconds, then
–  Switch to the other state if there is a car waiting
–  Current state goes for another 30 seconds if not

•  We use 1/30 Hz clock (Hz is clock cycles per second)
–  I.e., determine a new state (possibly current one) every thirty

seconds

101

Traffic light control example

102

Traffic light control example

103

Traffic light control example

104

Traffic light control example

•  Let’s assign “0” to NSlite and “1” to EWlite initially

•  NextState = CurrentState’⋅EWcar +
CurrentState⋅NScar’

•  NSlite = CurrentState’
•  EWlite = CurrentState

•  see carfsm.circ on 447 web site

