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Single vs. Multi-cycle Implementation 

•  Single cycle design is simple 
•  But it’s inefficient 
•  Why? 

–  All instructions have same clock cycle length - 
they all take the same amount of time regardless 
of what they actually do 

•  Clock cycle determined by longest path 
–  Load: uses IM, RF, ALU, DM, RF in sequence 

•  But others may be shorter 
–  R-type (arithmetic): use IM, RF, ALU, RF 
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Single Cycle: Load Word 
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Single Cycle: Load Word 
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Single vs. Multi-cycle Implementation 

•  Multicycle: Instructions take several faster cycles 
•  For this simple version, the multi-cycle 

implementation could be as much as 1.27 times 
faster (for a typical instruction mix) 

•  Suppose we had floating point operations 
–  Floating point has very high latency 
–  E.g., floating-point multiply may be 16 ns vs 

integer add may be 2 ns 
–  So, clock cycle constrained by 16 ns of FP 

•  Suppose a program doesn’t do ANY floating point? 
–  Performance penalty is too big to tolerate 
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Multi-cycle Implementation 

•  Single memory unit (I and D), single ALU 
•  Several temporary registers (IR, MDR, A, B, ALUOut) 
•  Temporaries hold output value of element so the 

output value can be used on subsequent cycle 
•  Values needed by subsequent instruction stored in 

programmer visible state (memory, RF) 
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A single ALU 

•  Single ALU must accomodate all inputs that used to 
go to three different ALUs in the single cycle 
implementation 

1. Multiplexor on first input to ALU to select A register 
(from RF) or the PC 

 
2. Multiplexor on second input to ALU to select from 

the constant 4 (PC increment), sign-extended value, 
shifted offset field, and RF input 

 
•  Trade-off: Additional multiplexors (and time) but only 

a single ALU since it can be shared across cycles 
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Multi-cycle Datapath with Control 

•  Datapath with additional muxes, temporary registers, 
and new control signals 

•  Most temporaries (except IR) are updated on every 
cycle, so no write control is required (always write) 
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Multi-cycle Steps - Instruction Fetch 

•  Instruction fetch  
IR = Memory[PC]; 
PC = PC + 4; 
 

•  Operation 
–  Send PC to memory as the address 
–  Read instruction from memory 
–  Write instruction into IR for use on next cycle 
–  Increment PC by 4 

•  Uses ALU in this first cycle 
•  Set control signals to send PC and constant 4 to ALU 
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Multi-cycle Steps - Instruction Decode 

•  Don’t yet know what instruction is 
–  Decode the instruction concurrently with RF read 
–  Optimistically read registers 
–  Optimistically compute branch target 
–  We’ll select the right answer on next cycle 

•  Decode and Register File Read 
A = Reg[IR[25-21]]; 
B = Reg[IR[20-16]]; 
ALUOut = PC + (sign-extend(IR[15-0]) << 2); 
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Multi-cycle Steps - Execution 

•  Operation varies based on instruction decode 

•  Memory reference: 
ALUOut = A + sign-extend(IR[15-0]); 

•  Arithmetic-logical instruction: 
ALUOut = A op B; 

•  Branch: 
if (A == B) PC = ALUOut; 

•  Jump: 
PC = PC[31-28] || (IR[25-0] << 2) 
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Multi-cycle Steps - Memory / Completion 

•  Load/store accesses memory or arithmetic writes 
result to the register file 

•  Memory reference: 
MDR = Memory[ALUOut]; (load) 
or 
Memory[ALUOut] = B; (store) 

•  Arithmetic-logical instruction: 
Reg[IR[15-11]] = ALUOut; 
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Multi-cycle Steps - Read completion 

•  Finish a memory read by writing read value into the 
register file 

•  Load operation: 
Reg[IR[20-16]] = MDR; 
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Multi-cycle Steps 

•  Instructions always do the first two steps 

•  Branch can finish in the third step 
•  Arithmetic-logical can finish in the fourth step 
•  Stores can finish in the fourth step 
•  Loads finish in the fifth step 

 Instruction    Number of cycles 
 Branch / Jump     3 
 Arithmetic-logical    4 
 Stores      4 
 Loads      5 
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Multi-cycle vs. Single cycle? 

•  Why does it help? 
•  Let’s consider a simple example.... in class example 
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Multi-cycle Instruction Exeution 

Branch 
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !ALUout=PC+(sign-extend(IR[15-0])<<2);!
Cycle2: !if A=B PC=ALUout;!

Arithmetic 
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !A=Reg[IR[25-21]]; B=Reg[IR[20-16]];!
Cycle2: !ALUout = A op B;!
Cycle3: !Reg[IR[15-11]]=ALUout;!
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Multi-cycle Instruction Exeution 

Load 
Cycle0: !IR=Memory[PC];!

! !PC=PC+4;!
Cycle1: !A=Reg[IR[25-21]];!
Cycle2: !ALUout = A + sign-extend(IR[15-0]);!
Cycle3: !MDR=Memory[ALUout];!
Cycle4: !Reg[IR[20-16]]=MDR;!
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Multi-cycle Datapath with Control 
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Multi-cycle Control 

memory 
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Finite State Machine 
 
each cycle: advance one state 
in a state: set datapath control 
make decision based on opcode 
control is different after Decode 
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Multi-cycle Control 

•  How are the control signals set in each state? 
•  What are the transitions between states? (i.e., what 

state is next?) 
•  Control signals 

–  IorD, MemRead, MemWrite, IRWrite, RegDst 
–  MemtoReg, RegWrite, ALUSrcA 
–  ALUSrcB, ALUOp 
–  PCWrite 

•  Transitions from Decode based on Opcode 
•  Transitions from Eff. Addr. happen on load/store 
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Multi-cycle Control 

•  What are the control signals in each state for instrs: 
–  Arithmetic 
–  Load  
–  Store 
–  Branch 
–  Jump 
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Control for each instruction type? 

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE) 
CONTROL FETCH(1) DECODE(2) STATE 3 STATE 4 STATE 5 
IorD 
MemRead 
MemWrite 
IRWrite 
RegDst 
MemToReg 
RegWrite 
ALUSrcA 
ALUSrcB 
ALUOp 
PCWrite 
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Control for addition (arithmetic) 

STATE (CYCLE NUMBER, ADVANCE EACH CYCLE) 
CONTROL FETCH(1) DECODE(2) EXE ALU(3) WB ALU(4) STATE 5 
IorD 0 X X X 
MemRead 1 0 0 0 
MemWrite 0 0 0 0 
IRWrite 1 0 0 0 
RegDst X X X 1 
MemToReg X X X 0 
RegWrite 0 0 0 1 
ALUSrcA 0 0 1 X 
ALUSrcB 01 11 00 X 
ALUOp 00 00 10 X 
PCWrite 1 0 0 0 
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Control for addition (load) 

STATE(CYCLE NUMBER, ADVANCE EACH CYCLE) 
CONTROL FETCH(1) DECODE(2) EFF AD(3) MEM RD(4) WB MEM(5) 
IorD 0 X X 1 X 
MemRead 1 0 0 1 0 
MemWrite 0 0 0 0 0 
IRWrite 1 0 0 0 0 
RegDst X X X X 0 
MemToReg X X X X 1 
RegWrite 0 0 0 0 1 
ALUSrcA 0 0 1 X X 
ALUSrcB 01 11 10 X X 
ALUOp 00 00 10 X X 
PCWrite 1 0 0 0 0 
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Finite state machine (FSM) 

Need a way to specify control per cycle 
FSM: Tracks “step of execution” to generate control signals 
Implementation: Generally, “hardwired” or “microcode” 
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Traffic light control example 

•  Two states 
–  NSgreen: green light on North-South road 
–  EWgreen: green light on East-West road 

•  Sensors (inputs) in each lane to detect car 
–  NScar: a car in either the north or south bound lanes 
–  EWcar: a car in either the east or west bound lanes 

•  Control signals (outputs) to each light 
–  NSlite: 0 is red, 1 is green 
–  EWlite: 0 is red, 1 is green 
 

•  Current state goes for 30 seconds, then 
–  Switch to the other state if there is a car waiting 
–  Current state goes for another 30 seconds if not 

•  We use 1/30 Hz clock (Hz is clock cycles per second) 
–  I.e., determine a new state (possibly current one) every thirty 

seconds 
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Traffic light control example 
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Traffic light control example 
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Traffic light control example 
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Traffic light control example 

•  Let’s assign “0” to NSlite and “1” to EWlite initially 

•  NextState = CurrentState’⋅EWcar + 
CurrentState⋅NScar’ 

•  NSlite = CurrentState’ 
•  EWlite = CurrentState 

•  see carfsm.circ on 447 web site 


