Single vs. Multi-cycle Implementation

+ Single cycle design is simple
« Butit’s inefficient
+ Why?
— All instructions have same clock cycle length -

they all take the same amount of time regardless
of what they actually do

* Clock cycle determined by longest path

— Load: uses IM, RF, ALU, DM, RF in sequence
* But others may be shorter

— R-type (arithmetic): use IM, RF, ALU, RF

73

Single Cycle: Load Word

74

Single Cycle: Load Word

Instruction [25-21] §
Read
C
P — N
Instruction [20-16] ead 4
-~ register 2
[31-0 - ?‘ e ROteS Ro
X ite data 2
Irstruction) 7| register
mmmmm ¥ Instruction [16-11] _ |‘ Write
ata

Instruction [15-0]

75

Single vs. Multi-cycle Implementation

* Multicycle: Instructions take several faster cycles

* For this simple version, the multi-cycle
implementation could be as much as 1.27 times
faster (for a typical instruction mix)

* Suppose we had floating point operations
— Floating point has very high latency

— E.g., floating-point multiply may be 16 ns vs
integer add may be 2 ns

— So, clock cycle constrained by 16 ns of FP
« Suppose a program doesn’t do ANY floating point?
— Performance penalty is too big to tolerate

76

Multi-cycle Implementation

Data

PC Address

Register #
Instruction
Memory or data

Me
ata
r Data register

« Single memory unit (I and D), single ALU
+ Several temporary registers (IR, MDR, A, B, ALUOut)

+ Temporaries hold output value of element so the
output value can be used on subsequent cycle

« Values needed by subsequent instruction stored in
programmer visible state (memory, RF) 77

Registers
Register #

ALUOut

Register #

A single ALU

» Single ALU must accomodate all inputs that used to
go to three different ALUs in the single cycle
implementation

1. Multiplexor on first input to ALU to select A register
(from RF) or the PC

2. Multiplexor on second input to ALU to select from
the constant 4 (PC increment), sign-extended value,
shifted offset field, and RF input

» Trade-off: Additional multiplexors (and time) but only

a single ALU since it can be shared across cycles
78

Multi-cycle Datapath with Control

« Datapath with additional muxes, temporary registers,
and new control signals

* Most temporaries (except IR) are updated on every
cycle, so no write control is required (always write) 79

Multi-cycle Steps - Instruction Fetch

* Instruction fetch
IR = Memory|[PC];
PC = PC + 4;

* Operation
— Send PC to memory as the address
— Read instruction from memory
— Write instruction into IR for use on next cycle
— Increment PC by 4
* Uses ALU in this first cycle
* Set control signals to send PC and constant 4 to ALU

80

Multi-cycle Steps - Instruction Decode

« Don’t yet know what instruction is
— Decode the instruction concurrently with RF read
— Optimistically read registers
— Optimistically compute branch target
— We' ll select the right answer on next cycle

+ Decode and Register File Read
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

81

Multi-cycle Steps - Execution

» Operation varies based on instruction decode

* Memory reference:

ALUOut = A + sign-extend (IR[15-0]) ;
+ Arithmetic-logical instruction:

ALUOut = A op B;

* Branch:
if (A == B) PC = ALUOut;
* Jump:
PC = PC[31-28] || (IR[25-0] << 2)

82

Multi-cycle Steps - Memory / Completion

* Load/store accesses memory or arithmetic writes
result to the register file

* Memory reference:
MDR = Memory[ALUOut]; (load)
or
Memory [ALUOut] = B; (store)

+ Arithmetic-logical instruction:
Reg[IR[15-11]] = ALUOut;

83

Multi-cycle Steps - Read completion

* Finish a memory read by writing read value into the
register file

* Load operation:
Reg[IR[20-16]] = MDR;

84

Multi-cycle Steps

* Instructions always do the first two steps

* Branch can finish in the third step

+ Arithmetic-logical can finish in the fourth step
» Stores can finish in the fourth step

* Loads finish in the fifth step

Instruction Number of cycles
Branch / Jump 3
Arithmetic-logical 4
Stores 4
Loads 5

85

Multi-cycle vs. Single cycle?

* Why does it help?
* Let’s consider a simple example.... in class example

86

Multi-cycle Instruction Exeution

Branch
CycleO:

Cyclel:
Cycle2:

Arithmetic
CycleO:

Cyclel:
Cycle2:
Cycle3:

IR=Memory[PC];

PC=PC+4;
ALUout=PC+(sign-extend(IR[15-0])<<2);
if A=B PC=ALUout;

IR=Memory[PC];

PC=PC+4;

A=Reg[IR[25-21]]; B=Reg[IR[20-16]];
ALUout = A op B;
Reg[IR[15-11]]=ALUout;

88

Multi-cycle Instruction Exeution

Load
CycleO:

Cyclel:
Cycle2:
Cycle3:
Cycled:

IR=Memory[PC];

PC=PC+4;

A=Reg[IR[25-211];

ALUout = A + sign-extend(IR[15-0]);
MDR=Memory [ALUout] ;
Reg[IR[20-16]]=MDR;

89

Multi-cycle Datapath with Control

Instruction Read
Address 125-21] register 1 M
- et Read
Instruction e :
Memary [20-16) register 2 4331
MemData ¥ . o \\‘(IR“JM“;E ALUOuwt
Instruction M ite ead
o !
150 [prtruction| 1 [register s 2 fmmmte] B 0
Wite . 5 x .
e Instruction GESTIN Write a1 M
register) 2t
Instructicn o 3
[15-0)
Memory f
data 6 3
o . K
| \
Instruction [5-0J |
Lt

90

Multi-cycle Control

Finite State Machine

each cycle: advance one state DECODE
in a state: set datapath control REG RD
make decision based on opcode

control is different after Decode

91

Multi-cycle Control

* How are the control signals set in each state?

* What are the transitions between states? (i.e., what
state is next?)

» Control signals
— lorD, MemRead, MemWrite, IRWrite, RegDst
— MemtoReg, RegWrite, ALUSrcA
— ALUSrcB, ALUOp
— PCWrite
* Transitions from Decode based on Opcode
» Transitions from Eff. Addr. happen on load/store

93

Multi-cycle Control

* What are the control signals in each state for instrs:
— Arithmetic
— Load
— Store
— Branch
— Jump

94

Control for each instruction type?

e STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)

CONTROL
lorD
MemRead
MemWrite
IRWrite
RegDst
MemToReg
RegWrite
ALUSrcA
ALUSrcB
ALUOp
PCWrite

FETCH(1)

DECODE(2) STATE 3

STATE 4 STATE 5

95

Control for addition (arithmetic)

] STATE (CYCLE NUMBER, ADVANCE EACH CYCLE)

CONTROL
lorD
MemRead
MemWrite
IRWrite
RegDst
MemToReg
RegWrite
ALUSrcA
ALUSrcB
ALUOp
PCWrite

FETCH(1)

O O X X =~ O =~ O

- O O
o =

DECODE(2) EXE ALU(3)

X X
0 0
0 0
0 0
X X
X X
0 0
0 1
11 00
00 10
0 0

WBALU@4) STATES5
X

O X X X =~ O »~ O o o

97

Control for addition (load)

e STATE(CYCLE NUMBER, ADVANCE EACH CYCLE)

CONTROL
lorD
MemRead
MemWrite
IRWrite
RegDst
MemToReg
RegWrite
ALUSrcA
ALUSrcB
ALUOp
PCWrite

©O O X X = O =~ O
X X © o o X

o O
o -
o =~ O O
o -

-
o

DECODE(2) EFF AD(3)

X

- O X X © o o

10

©O X X X © X X © o =~ =~

MEM RD(4) WB MEM(5)

X

O X X X = »~ 0o o o o

98

Finite state machine (FSM)

Need a way to specify control per cycle

FSM: Tracks “step of execution” to generate control signals
Implementation: Generally, “hardwired” or “microcode”

Inputs

L Current state

Next-state
function
Output
function

Next
state

— Outputs

99

Traffic light control example

* Two states
— NSgreen: green light on North-South road
— EWgreen: green light on East-West road

4|9 z

_e
* Sensors (inputs) in each lane to detect car ®
— NScar: a car in either the north or south bound |
— EWecar: a car in either the east or west bound lanes

* Control signals (outputs) to each light "
— NSilite: 0 is red, 1 is green —
— EWIite: 0 is red, 1 is green B

a|9 z

* Current state goes for 30 seconds, then
— Switch to the other state if there is a car waiting
— Current state goes for another 30 seconds if not

* We use 1/30 Hz clock (Hz is clock cycles per second)

— lL.e., determine a new state (possibly current one) every thirty
seconds 100

Traffic light control example

NScar
EWecar

NSlite ’
EWilite ,

Light
Control

101

Traffic light control example

Currnt state | Woow [EWew | Nextstate

NSgreen 0 (o] NSgreen
NSgreen 0 1 EWgreen
NSgreen 1 (0] NSgreen
NSgreen 1 1 EWgreen
EWgreen 0 0 EWgreen
EWgreen (0] 1 EWgreen
EWgreen 1 (0] NSgreen
EWgreen 1 1 NSgreen
| Outputs |
[
NSgreen 1 0
EWgreen (0] 1

102

Traffic light control example

EWecar

NSlite=1 NSlite=0
EWIlite=0 EWilite=1

103

Traffic light control example

* Let’s assign “0” to NSlite and “1” to EWIite initially

* NextState = CurrentState’-EWcar +
CurrentState-NScar’

* NSlite = CurrentState’
 EWIlite = CurrentState

» see carfsm.circ on 447 web site

104

