
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
122

Procedures
int len(char *s) {

for (int l=0; *s != ‘\0’; s++) l++;
return l;

}
void reverse(char *s, char *r) {

char *p, *t;
int l = len(s);
*(r+l) = ‘\0’;
l--;
for (p=s+l t=r; l>=0; l--) { *t++ = *p--; }

}
void main(int) {

char *s = “Hello World!”;
char r[100];
reverse(s,r);

}

main

reverse

len

reverse(s,r)

len(s) 12

N/A

How can we do this with assembly?
* Need a way to call / return procedures
* Need a way to pass arguments
* Need a way to return a value

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
123

Procedure Call and Return
§ Procedure call

• Jump to the procedure
• The return goes back to the point immediately after the call
• Need to pass “return address” (instruction after call)
• jal Label

$ra = PC+4 # set return address to next PC
PC = PC[31:28] | Label << 2 # jump to procedure

§ Procedure return
• Need return address (address of instruction after the jal Label)
• Need to jump back to the return point
• jr $ra

PC = $ra # jump back to return address

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
124

In Class Quick Example!

§ Write a procedure “hello” that prints “Hello”
§ Write a procedure “world” that prints “World”
§ Call them both to print HelloWorld

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
125

Arguments and Return Value
§ Register conventions specified in PRM

• $a0-$a3: four arguments for passing values to called procedure
• $v0-$v1: two values returned from called procedure
• $ra: return address register (set by call, used by return)

§ Call chains
• One procedure calls another, which calls another one
• E.g., main® reverse® len

• What happens to $ra??? (e.g., when reverse calls len)

§ You must save $ra someplace!
• Simple approach: A “free” register (can’t be used by caller)
• Leaf procedure: Doesn’t make any calls. Doesn’t need to save $ra.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
126

In class example!

§ Write two procedures
§ Procedure #1: print(str): prints the string pointed to by str
§ Procedure #2: hello(n): print “Hello World!” n times

• Newline between each print
• Shouldn’t print anything when n=0
• What argument register to use?

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
127

More Procedure Call/Return
§ Caller: The procedure that calls another one
§ Callee: The procedure that is called by the caller
§ What if callee wants to use registers?

• Caller is also using registers!!!
• If callee wants to use same registers, it must save them
• Consider what happened with $ra in a call chain

§ Register usage conventions specified by PRM
• $t0-$t9: Temp. registers; if caller wants them, must save before call
• $s0-$s7: Saved registers; saved by callee prior to using them

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
128

Where to save?
§ Need memory space to hold saved (“spilled”) registers

• Caller spills $t0-$t9 that be must saved to memory
• Callee spills $s0-$s7 to memory, when these regs are used
• Other registers (e.g., $v0, $v1 might also need to be saved)
• Non-leaf caller saves $ra when making another call

§ Each procedure needs locations to save registers
§ In general, call-chain depth (number of called procs) is unknown, so

we need to support undetermined length
§ Suggestion: Use a stack, located in memory. Add “stack element”

onto stack for each call. The “stack element” has the locations to
hold values.

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
129

Program Stack
§ Program stack: Memory locations used by running program

• Has space for saved registers
• Has space for local variables, when can’t all fit in registers

E.g., local arrays are allocated on the stack
• Has space for return address

§ Each procedure allocates space for these items
• So-called “activation frame” (a.k.a., “activation record”)
• Purpose of locations in activation frame are known
• Location of activation frame isn’t known until procedure call made

§ Prologue (entry point into the procedure): Allocates an activation
frame on the stack

§ Epilogue (exit point from procedure): De-allocates the activation
frame, does actual return

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
130

Procedure Structure and Stack
foo:

prologue - entry to function
addi $sp, $sp, -8 # push, adjust size(AR)
sw $s0,0($sp) # save needed temp reg
sw $ra,4($sp) # save ra, non-leaf

…. procedure body …..

foo_exit:
epilogue - exit from function
lw $ra,4($sp) # restore RA
lw $s0,0($sp) # restore $s0
addi $sp,$sp,8 # pop AR

<$sp32

28

24

20

16

<$sp

32

28

24

20

16

$s0 saved

$ra saved

jr $ra

<$sp

32

28

24

20

16

$s0 saved

$ra saved

<$sp32

28

24

20

16

(1) Before call (2) Prologue

(3) Proc body (4) Epilogue

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
131

Calling convention
§ Caller saves needed registers, sets up args, makes call

• Argument registers $a0-$a3
• When not enough arg regs: put arguments onto the stack

§ Callee procedure prologue
• Adjust stack pointer for activation frame size to hold enough space to hold saved

registers, locals, return address (non-leaf)
• Save any saved registers to the stack
• Save return address to the stack

§ Callee procedure body
• Access stack items as needed
• Including loading arguments from the stack

§ Callee procedure epilogue
• Restore return address from the stack (non-leaf)
• Restore any saved registers from the stack
• Return to caller
• Return value in $v0, $v1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
132

Example: Factorial

/* factorial */
int fac(int f) {
if (f == 1) // end of recursion
return 1;

else // go to bottom
return (fac(f-1) * f);

}

int main(void) {
a = fac(3);
print(a);

}

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
133

Example: Factorial

fact(3) returns 6
fact(3-1) * 3 returns 2 * 3
fact(2-1) * 2 returns 1 * 2
fact(1) * 1 returns 1 * 1

call factorial again, when not at end of recursion (f==1)
on each call, we need to pass a new argument to next one
on return, we do the actual computation and pass value back

need the return address & possibly temporary storage
set up a stack to make space

See factorial.asm

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
134

procedure reverse($a0,$a1)
reverse:

move $t7,$ra # save return address
jal len # get length of source string
blt $v0,$0,rev_exit # exit if empty string
add $t0,$a1,$v0 # null terminate target string
sb $0,0($t0) # put null into end of string
addi $v0,$v0,-1 # decrement length (written /0)
add $t0,$a0,$v0 # $t0 holds p (source string)
add $t1,$a1,$0 # $t1 holds t (target string)

rev_loop:
lbu $t2,0($t0) # get char from source string
sb $t2,0($t1) # save char to target string
addi $t0,$t0,-1 # decrement source string ptr
addi $t1,$t1,1 # increment target string ptr
addi $v0,$v0,-1 # decrement length
slt $t2,$v0,$0 # is l < 0?
beq $t2,$0,rev_loop

rev_exit:
move $ra,$t7
jr $ra

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
135

procedure len($a0); returns string length in $v0
len:

move $t0,$a0 # copy start ptr
len_loop:

lbu $t1,0($t0) # get char
beq $t1,$0,len_exit # check for null
addi $t0,$t0,1 # go to next character
j len_loop # continue loop

len_exit:
sub $v0,$t0,$a0 # diff of ptrs is length
jr $ra

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
136

.data
nl: .asciiz "\n"
s: .asciiz "Hello World!"
r: .space 100
.align 2
p: .word 0x0
t: .word 0x0
l: .word 0x0
.text
make the call to reverse
la $a0,s
la $a1,r
jal reverse

see mips12.asm for the full program

