
Performance	Evaluation

CS	0447

Tale	of	the	Two	Multipliers

• Slow	shift-adder	multiplier
– Suppose,	3	distinct	steps:	

(1)	add,	(2)	shift	left,	&	(3)	shift	right
– N=32	bits,	and	each	operand	is	32	bits

• Thus,	result	of	multiply	is	64	bits
• And,	the	adder	(ALU)	is	64	bits

• Suppose	64-bit	addition	takes	10ns
– Each	distinct	step	will	take	this	same	time

Tale	of	the	Two	Multipliers

• Total	time	to	do	multiplication

• Slow	shift	add	multiplier:
32	bits	× steps	each	=	96	steps
96	steps	× 10	ns	per	step	=	960	ns

Tale	of	the	Two	Multipliers

• Fast	shift-add	multiplier	improves
1. Combines	some	registers
2. Inherently	does	the	3	steps	simultaneously
3. Needs	only	a	32	bit	adder

• Assuming	linear	relationship	between	bits	and	
adder	speed,	then:
– 32-bit	add	latency	=	10	ns	64-bit	add	/	2	=	5	ns

Tale	of	the	Two	Multipliers

• Total	time	to	do	multiplication

• Fast	shift	add	multiplier:
32	bits	× 1	step	each	(combined)	=	32	steps
32	steps	× 5	ns	per	step	=	160	ns

Tale	of	the	Two	Multipliers

• How	much	faster	is	the	multiply	hardware?
– Compute	“speedup”	ratio:	The	factor	by	which	the	
new	version	is	faster	than	the	old	one

– Speedup	=	Slow	multiply	time	/	Fast	multiply	time
– Speedup	=	960	ns	/	160	ns	=	6	times	faster!

• Will	a	“real”	program	see	a	6x	improvement?
– Depends	on	how	much	the	multiply	is	used
– Never	used:	No	speedup!

A	Simple	Program
li $1,100

L0: lw $2,A[i] ; pseudo-code to load A[i]
lw $3,B[i] ; pseudo-code to load B[i]
mult $3,$2
mflo $4
sw $4,C[i] ; pseudo-code to store C[i]
addi $1,$1,-1
bne $1,$0,L0

How	many	times	does	this	loop	execute?		
How	many	instructions	are	executed?

100

1	(li)	+	100	*	6	(non-multiply)	+	100	*	1	(multiply)	=	701	instructions

Execution	Time
• Execution	time	is	how	long	(“latency”)	it	takes	
to	execute	the	program.

• What’s	the	time	with	the	slow	shift-multiply?
time	 =	1	× 10ns	+	6	× 100	× 10	ns	+	1	× 100	× 960	ns

=	10	ns	+	6,000	ns	+	96,000	ns
=	102,010ns

• Time	with	the	fast	shift	multiply?
time =	1	× 10	ns	+	6	× 100	× 10	ns	+	1	× 100	× 160	ns

=	10	ns	+	6,000	ns	+	16,000	ns
=	22,010	ns

Execution	Time
• Execution	time	is	how	long	(“latency”)	it	takes	
to	execute	the	program.

• What’s	the	time with	the	slow	shift-multiply?
time	 =	1	× 10ns	+	6	× 100	× 10	ns	+	1	× 100	× 960	ns

=	10	ns	+	6,000	ns	+	96,000	ns
=	102,010ns

• Time	with	the	fast	shift	multiply?
time =	1	× 10	ns	+	6	× 100	× 10	ns	+	1	× 100	× 160	ns

=	10	ns	+	6,000	ns	+	16,000	ns
=	22,010	ns

Speedup	of	Multipliers

• What’s	the	speedup	of	the	program	with	the	
faster	multiplier	over	the	slower	one?

Speedup	 =	time	of	slow	/	time	of	fast
=	102,010	ns	/	22,010	ns
=	4.63	speedup

It’s	not	a	6x	speedup.	Why?
Hint:	Is	the	multiplier	always	used	by	the	program?

Speedup	of	Multipliers

• Indeed,	what	happens	as	we	decrease	
proportion	of	execution	time	on	multiply?

Suppose	101	instructions:	100	non-multiply,	1	multiply
Time	of	slow: 100	× 10	ns	+	960	ns	=	1960	ns
Time	of	fast: 100	× 10	ns	+	160	ns	=	1160ns
Speedup: 1960	ns	/	1160	ns	=	1.7

Suppose	1001	instructions:	1000	non-multiply,	1	multiply
Time	of	slow: 1000	× 10	ns	+	960	ns	=	10960ns
Time	of	fast: 1000	× 10	ns	+	160	ns	=	10160	ns
Speedup	=	10960	ns	/	10160	ns	=	1.08

Hmmm....

• 6x	è 4.63x	è 1.7x	è 1.08x				 Interesting.
• What	happened?

– Proportion	of	time	on	multiply	wasn’t	enough	to	
realize	the	gains	from	it

• Thus,	we	must	be	careful.	Strike	a	balance.
– Look	for	“bottleneck”	for	the	common	case
– Improve	it	to	a	point
– There’s	a	diminishing	return!	Be	careful.	

Now,	let’s	consider...

• How	much	faster	in	practice	is	the	pipelined	
version	of	MIPS	than	the	multi-cycle	one?

• As	before,	we	can	compute	speedup:
Speedup	=	Time	on	slow	/	Time	on	fast

• But	how	do	we	compute	“time”?
– Concept	of	CPU	time:	Execution	time	of	a	program	
when	run	on	the	processor.	

CPU	Time
• CPU	clock	cycles	=	Instructions	for	a	program	× Average	CPI
• CPI	=	Clock	Cycles	per	Instruction	for	an	average	instruction

• Classic	CPU	Performance	Equation:
CPU	time	=	Instruction	count	× CPI	× Clock	cycle	time

=	IC	× CPI	× CC

or,	rewritten:

speedClock	
CPI		count	nInstructio		time	CPU ´

=

Average	Instruction	(CPI)

• What’s	an	“average	instruction”	(CPI)?
• Given	a	program,	how	many	cycles does	an	
instruction	typically take?
– Depends	on	how	many	instructions,	what	types
– E.g.,	all	adds	vs.	all	loads	for	multi-cycle	impl.
– It	is	just	an	average	cycle	count	per	instruction

Instruction	Mix

• Instruction	mix:	 %	total	instruction	count	(IC)	
corresponding	to	each	instruction	class

• Program	A:	100	adds,	100	subtracts,	50	loads,	25	
stores,	50	branches,	and	10	jumps

Instruction	Count	=	100	+	100	+	50	+	25	+	50	+	10	=	335

• Thus,	the	mix (%	of	each	class):	
Arithmetic (100+100)	/	335	=	 0.597	=	 59.7%
Load 50	/	335	=	 0.149	=	 14.9%
Store 25	/	335	=	 0.075	=	 7.5%
Branch 50	/	335	=	 0.149	=	 14.9%
Jump 10	/	335	=	 0.03	=	 3.0%

Cycles	Per	Instruction

Average	Cycles	Per	Instruction	(CPI)
Computed	as	weighted	average

CPI	=	sum	for	all	class	i of	freq i *	cycles	i

Class freq i cycles	i
Arithmetic	 59.7% 4
Load	 14.9% 5
Store	 7.5% 4
Branch	 14.9% 3
Jump	 3.0% 3

Multicycle	Impl.

Cycles	Per	Instruction

Average	Cycles	Per	Instruction	(CPI)
Computed	as	weighted	average

CPI	=	sum	for	all	class	i of	freq i *	cycles	i

Class freq i cycles	i contribution
Arithmetic	 59.7% ✕ 4 = 2.388
Load	 14.9% ✕ 5 = 0.745
Store	 7.5% ✕ 4 = 0.3
Branch	 14.9% ✕ 3 = 0.447
Jump	 3.0% ✕ 3 = 0.09

Cycles	Per	Instruction

Average	Cycles	Per	Instruction	(CPI)
Computed	as	weighted	average

CPI	=	sum	for	all	class	i of	freq i *	cycles	i

Class freq i cycles	i contribution
Arithmetic	 59.7% ✕ 4 = 2.388
Load	 14.9% ✕ 5 = 0.745
Store	 7.5% ✕ 4 = 0.3
Branch	 14.9% ✕ 3 = 0.447
Jump	 3.0% ✕ 3 = 0.09

100% 3.97	CPI	

CPU	Time

• CPU	time	=	IC	✕ CPI	✕ Cycle	Length
• Suppose	Multicycle	Cycle	Length	is	2	ns
• Then,	the	CPU	time	for	program	A	is:

CPU	time	 =	IC	✕3.97	✕ 2ns
=	7.94	ns	✕ IC

Or,	IC=335:	 335	✕ 3.97	✕ 2ns	=	2,660	ns

An	Example

• Suppose	cycle	time	is	1 ns
• Multi-cycle	takes	how	many	cycles	for	each?

– Arithmetic 4
– Load 5
– Store	 4
– Branch 3

An	Example	(Cont)
.data
A: .word 10,20,30,40,50,60,70,80,90
B: .word 0, 0, 0, 0, 0, 0, 0, 0, 0
.text

li $t0,10 # 1 instruction
la $t1,A # 2 instructions

loop: lw $t3,0($t1)# executed 10 times, 10 loads
add $t3,$t3,$t3
add $t3,$t3,$t3
sw $t3,40($t1) # executed 10 times, 10 stores
addi $t1,$t1,4
addi $t0,$t0,-1# 4 adds/iteration * 10 = 40 adds
bne $t0,$0,loop # executed 10 times, 10 branches
li $v0,10 # 1 instruction
syscall # 1 instruction

An	Example

• Now,	for	the	multi-cycle	example,	answer	the	
following:

What	is	the	instruction	mix?
What	is	the	CPI?
What	is	the	CPU	execution	time?

Multi-cycle	Example

• Instruction	mix:		Determine	IC,	and	then	
proportion	of	IC	for	each	type

• What	is	the	CPI?
CPImulti =	0.6	× 4	+	0.13	× 5	+	0.13	× 4	+	0.14	× 3

=	2.4	+	0.65	+	0.52	+	0.42
=	3.99	cycles

Class Frequency Cycles
arithmetic 45	/	75	=	0.6 4

load 10	/	75	=	0.13 5

stores 10	/	75	=	0.13 4

branch 10	/	75	=	0.14	(rounding) 3

Multi-cycle	Example

• What	is	the	CPU	execution	time?
CPU	time	multi	=	ICmulti × CPImulti × CCmulti

ICmulti =	75
CPImulti =	3.99	(computed	previous	slide)
CCmulti =	1ns	(given)

Thus,	CPU	time	multi =	ICmulti × CPImulti × CCmulti
=	75	× 3.99	× 1ns
=	299.25ns

An	Example:	Pipeline	Version!

• Consider	the	same	program	but	execute	it	on	
a	pipelined	processor.

• In	the	best	case,	what	is	the	CPI?
• In	the	typical	case,	what	is	the	CPI?

– Say,	we	filled	20%	of	delay	slots	(no	delay!)
– 60%	of	loads	have	a	load-use	delay	of	1	cycle

• Assuming	each	stage	takes	1ns,	what	is	the	
CPU	execution	time	for	pipelied?

Pipelined	Speedup

• Instruction	mix:	Treat	the	load-use	and	branch	
delays	as	separate	instruction	classes
Class Frequency Cycles
arithmetic 45	/	75	=	0.6 1

load	– no	delay ((100%	- 60%)	× 10)	/	75	=	0.05 1

load	– delayed (60% × 10)	/	75	=	0.08 2

stores 10	/	75	=	0.13 1

branch – filled	slot (20% × 10) /	75	=	0.03 1

branch	– unfilled	slot (80%	× 10)	/	75	=	0.11 2

Pipelined	Speedup

Using	the	mix,	compute	the	CPI	of	the	pipelined	implementation:
CPIpipe =	0.6×1	+	0.05×1	+	0.08×2 +	0.13×1	+	0.03×1	+	0.11×2

=	0.6	+	0.05	+	0.16	+	0.13	+	0.03	+	0.22
=	1.19

Class Frequency Cycles
arithmetic 45	/	75	=	0.6 1

load	– no	delay ((100%	- 60%)	× 10)	/	75	=	0.05 1

load	– delayed (60% × 10)	/	75	=	0.08 2

stores 10	/	75	=	0.13 1

branch – filled	slot (20% × 10) /	75	=	0.03 1

branch	– unfilled	slot (80%	× 10)	/	75	=	0.11 2

Pipelined	Speedup
• Compute	CPU	execution	time	of	pipelined	implementation
• CPU	time	pipe	=	ICpipe × CPIpipe × CCpipe
• ICpipe is	just	75,	same	instruction	count	as	multicycle!

– Property	of	the	program	– not	of	the	hw implementation
• CPIpipe computed	(previous	slide)	as	1.19
• Assuming	the	same	cycle	time	(1ns)	as	multicycle:

CPU	time	pipe =	75	× 1.19	× 1	ns
=	89.25	ns

Speedup	of	pipe =	CPU	time	multi	/	CPU	time	pipe
=	299.25	ns	/	89.25	ns
=	3.35x

Comparison
• Speedup	of	pipelined	implementation	over	the	multicycle?

Speedup	 =	CPU	time	multi	/	CPU	time	pipe
=	(IC	× CPImulti × CCmulti)	/	(IC	× CPIpipe × CCpipe)
=	(75	× 3.99	× 1ns)	/	(75	× 1.19		× 1ns)
=	3.99	/	1.19	
=	3.35x

• Speedup	of	pipelined	implementation	over	single	cycle?
Speedup =	CPU	time	single	/	CPU	time	pipe

=	(IC	× CPIsingle × CCsingle)	/	(IC	× CPIpipe × Ccpipe)
=	(75	× 1	× 5ns)	/	(75	× 1.19	× 1ns)
=	5	/	1.19
=4.2x	

Note	single	cycle	CPI	is	always	1!	J

The three implementations
CPU time = IC × CPI × CC
For same instruction set (IC same):

Single cycle: CPI = 1, long CC
Multi cycle: CPI>1, probably 3-4, short CC
Pipelined: CPI>1, probably 1.2-1.4, short CC

IC is affected by the program (what instructions executed)
CPI is affected by the program and the implementation
CC is affected by the implementation

Fundamentally, these are the “three knobs” that we can
control when we design a processor.

