
CS/COE0447: Computer Organization and
Assembly Language

Logic Design Introduction (Brief?)

Appendix B: The Basics of Logic Design

Dept. of Computer Science
University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
2

Logic design?

§ Digital hardware is implemented by way of logic design
§ Digital circuits process and produce two discrete values: 0 and 1

§ Example: 1-bit full adder (FA)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
3

Layered design approach

§ Logic design is done using logic gates
§ Often we design a desired hardware function using high-level

languages (HDLs) and somewhat higher level than logic gates
§ Two approaches in design

• Top down
• Bottom up

Transistors

Logic gates

Function blocks

Microarchitecture

We’ll do logic bottom up

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
4

Transistor as a switch

G

X

Y

Y

X

G=1

Y

X

G=0

Y

X

G=0

Y

X

G=1

G

X

Y
“N”-type TR

“P”-type TR

“ON” “OFF”

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
5

An inverter

“N”-type TR

“P”-type TR

A Y

“1”

“0”

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
6

When A = 1

“N”-type TR

“P”-type TR

A=1 Y=0

“1”

“0”

“OFF”

“ON”

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
7

When A = 0

“N”-type TR

“P”-type TR

A=0 Y=1

“1”

“0”

“ON”

“OFF”

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
8

Abstraction

“N”-type TR

“P”-type TR

A Y

“1”

“0”

A Y

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
9

Logic gates

Y=A & B

Y=A | B

Y=~(A & B)

Y=~(A | B)

2-input AND

2-input OR

2-input NAND

2-input NOR
A

B

A

A

A

B

B

B
Y

Y

Y

Y

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
10

Describing a function

§ OutputA = F(Input0, Input1, …, InputN–1)
§ OutputB = F’(Input0, Input1, …, InputN–1)
§ OutputC = F’’(Input0, Input1, …, InputN–1)
§ …

§ Methods
• Truth table
• Sum of products
• Product of sums

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
11

Truth table

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
12

Sum of products

§ S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

§ Cout = A’BCin + AB’Cin + ABCin’ + ABCin

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

OR two minterms

“Minterm”
NOT(A) AND NOT(B) AND Cin

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
13

Combinational vs. sequential logic

§ Combinational logic = function
• A function whose outputs are dependent only on the current inputs
• As soon as inputs are known, outputs can be determined

§ Sequential logic = combinational logic + memory
• Some memory elements (i.e., “state”)
• Outputs are dependent on the current state and the current inputs
• Next state is dependent on the current state and the current inputs

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
14

Combinational logic

inputs outputs… …

delay (it takes time to compute)

Outputs are uniquely determined by the inputs at any moment

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
15

Combinational logic

inputs outputs… …

delay (it takes time to compute)

Outputs are uniquely determined by the inputs at any moment

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
16

Sequential logic

inputs outputs… …
clock

current
state

next
state

delay (it takes time to compute, matched to clock)

Outputs are determined by current & past inputs (past is “state”)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
17

Sequential logic

inputs outputs… …
clock

current
state

next
state

delay (it takes time to compute, matched to clock)

Outputs are determined by current & past inputs (past is “state”)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
18

Combinational logic

§ Any combinational logic can be implemented using sum of products
(OR-AND) or product of sums (AND-OR)

§ Input-output relationship can be defined in a truth table format
§ From truth table, derive each output function
§ And then we can derive a circuit!! Let’s try it!

• Example: Write circuit for an 1-bit ADDER

§ Boolean expressions can be further manipulated (e.g., to reduce
cost) using various Boolean algebraic rules

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
19

Boolean algebra

§ Boole, George (1815~1864): mathematician and philosopher;
inventor of Boolean Algebra, the basis of all computer arithmetic

§ Binary values: {0,1}
§ Two binary operations: AND (×/×), OR (+)
§ One unary operation: NOT (~)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
20

Boolean algebra

§ Binary operations: AND (×/×), OR (+)
• Idempotent

a×a = a+a = a
• Commutative

a×b = b×a
a+b = b+a

• Associative
a×(b×c) = (a×b)×c
a+(b+c) = (a+b)+c

• Distributive
a×(b+c) = a×b + a×c
a+(b×c) = (a+b)×(a+c)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
21

Boolean algebra

§ De Morgan’s laws
• ~(a×b) = ~a + ~ b
• ~(a+b) = ~a×~b

§ More…
• a+(a×b) = a
• a×(a+b) = a
• ~~a = a
• a+~a = 1
• a×(~a) = 0

It is not true I ate the sandwich and the soup.

same as:

I didn’t eat the sandwich or I didn’t eat the soup.

It is not true that I went to the store or the library.

same as:

I didn’t go to the store and I didn’t go to the library.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
22

Expressive power

§ With AND/OR/NOT, we can express any function in Boolean
algebra

• Sum (+) of products (×)

§ What if we have NAND/NOR/NOT?
§ What if we have NAND only?
§ What if we have NOR only?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
23

Using NAND only

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
24

Using NOR only (your turn)

NOT
= ¬(A + A)
= ¬A ^ ¬A
= ¬A

AND
= ¬(¬(A + A) + ¬(B + B))
= ¬ (¬A ^ ¬A + ¬B ^ ¬B)
= ¬(¬A + ¬B)
= ¬(¬A) ^ ¬(¬B)
= A ^ B

OR
= ¬(¬(A + B) + ¬(A + B))
= (A + B) ^ (A + B)
= A + B

§ Can you do it?
§ NOR is ¬(A + B)

• I.e., We need to write NOT, AND, and OR in terms of NOR

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
25

Using NOR only (your turn)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
26

Now, it’s really your turn….

§ How about XOR?

A B C
0 0 0
0 1 1
1 0 1
1 1 0

C = A’B + AB’

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
27

Now, it’s really your turn….

§ How about XOR?

A B C
0 0 0
0 1 1
1 0 1
1 1 0

C = A’B + AB’

0

1

1

1

0

1

0

1

1

0

0

0

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
28

Simplifying expressions

§ Cout = A’BCin + AB’Cin + ABCin’ + ABCin

§ Cout = BCin + ACin + AB

§ Simplification reduces complexity: faster, smaller circuit!

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
29

Karnaugh map

A
0 1

00

01

11

10 10

1

1

00

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

A “tool” to help simplify boolean
expressions
Like a “slide rule”: Useful but limited

Build from the initial boolean expr.
Put a “1” where a minterm is true

E.g.., AB’Cin has a 1

Now, to simplify:
Look for adjacent max rectangular
groups with power of 2 elements.
In such a group, some var is {0,1}
Eliminate that variable

Here’s another one!
Groups can be vertical too.
They can even “wrap around”
They can also overlap
Diagonals aren’t allowed

A truth table listing “minterms”
Minterms written in Gray code order
One var value changes betw. col/row

Cout = A’BCin + AB’Cin + ABCin’ + ABCin

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
30

§ Cout = A’BCin + AB’Cin + ABCin’ + ABCin

§ S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

A
0 1

00

01

11

10 10

1

1

00

0

1 BCin

AB

ACin

Cout = BCin+AB+ACin

BCin

01

1

0

10

1

0

A
0 1

00

01

11

10

BCin

S = A’B’Cin + A’BCin’
+ AB’Cin’ + ABCin

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
31

Four (or more?) Variables

CD

AB

00 01 11 10
00 0 0 0 0
01 0 0 0 0
11 0 1 1 0
10 0 1 1 0

Can you minimize this one?

In AB: B is both {0,1}
In CD: C is both {0,1}

Eliminate B, C
Thus, we have just AD

CD

AB

00 01 11 10
00 0 0 0 0
01 1 1 1 1
11 1 1 1 1
10 0 0 0 0

Can you minimize this one?

C,D both have {0,1}
A has {0,1}

Eliminate A,C,D
Thus, we have just B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
32

Four (or more?) Variables

CD

AB

00 01 11 10
00 1 0 0 1
01 0 0 0 0
11 0 0 0 0
10 1 0 0 1

Can you minimize this one?

Combine on top row
Combine on bottom row

A’B’D’
AB’D’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
33

In-class Example

§ A device called a “7 segment LED digit”
§ There are 8 LEDs – one for seven “segments” of a numeral and 1 for

a decimal point

§ Problem
• Given a 3-bit number, draw the corresponding numeral
• E.g., 000 is the numeral 0, 001 is numeral 1 and so forth

§ Solution
• Create a Boolean function for each segment. Ignore the decimal point.
• Boolean function over three inputs for the 3-bit number.

§ Let’s try it!!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Segments numbered d0 to d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 0
0 1 1 1 0 1 1 1

d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 1
0 0 0 1 0 1 0 0
d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 2
1 0 1 1 0 0 1 1

d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 3
1 0 1 1 0 1 1 0
d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 4
1 1 0 1 0 1 0 0
d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 5
1 1 1 0 0 1 1 0

d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 6
1 1 0 0 0 1 1 1

d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d0 d1 d2 d3

d5d6d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off

State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

d4

Numeral 7
0 0 1 1 0 1 0 0

d0 d7

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
43

In-class Example

§ Create a truth table
§ Inputs are numbered i0 to i2 (3 bits)
§ Outputs are numbered d0 to d7, corresponding to segments
§ “Draw” the numerals by setting d0 to d7 to 1s or 0s.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

inputs outputs

Input: 3-bit number Outputs: Segments for the LED hex digit

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

inputs outputs

Fill in the truth table for each numeral
Numerals 0 to 2 are shown.
Can you complete 3 to 7?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

inputs outputs

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

inputs outputs

Completed truth table
Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0

1

i1, i0

i2

Use a K-map for each output function – d0 to d7

Let’s start with d0
We’ll only do a few – d0, d3 and d5

Can you do the rest on your own???

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 0 0 1 1

1 1 1 0 1

i1, i0

i2

Function d0

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 0 0 1 1

1 1 1 0 1

i1, i0

i2

Function d0

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

3 terms
i2’i1
i2i1’
I2i0’

d0=i2i1 + i2i1 + i2i0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 1

1 1 0 1 0

i1, i0

i2

Function d3

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 1

1 1 0 1 0

i1, i0

i2

Function d3

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

d3=i2 + i1i0 + i1i0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 0

1 1 1 1 1

i1, i0

i2

Function d5

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

00 01 11 10

0 1 1 1 0

1 1 1 1 1

i1, i0

i2

Function d5

i2 i1 i0 d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0

d5=i1 + i0 + i2

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Completed Circuit with all functions d0 to d7

Inputs

Outputs to the LED hex digit

See example: LEDhexdigit.circ

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
56

Multiplexor (aka MUX)
An example, yet VERY useful circuit!

A

Y

B

S
Y = (S) ? B:A;

0

1

when S =
0: output A
1: output B

S A B Y

0 0 x 0
0 1 x 1
1 x 0 0
1 x 1 1

Y=S’A+SB
S=0S=1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
57

A 32-bit MUX Use 32 1-bit muxes
Each mux selects 1 bit
S is connected to each mux

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
58

Building a 1-bit ALU

§ ALU = arithmetic logic unit = arithmetic unit + logic unit

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
59

Building a 32-bit ALU

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
60

Implementing “sub”

Binvert=1
CarryIn=1 for 1st 1-bit ALU
Operation=2

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
61

Implementing NAND and NOR

NOR:
NOT (A OR B)
by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
Operation=0,
Ainvert=1,
Binvert=1

And, NAND???

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
62

Implementing SLT (set-less-than)

1-bit ALU for bits 0~30 1-bit ALU for bit 31

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
63

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Consider
Suppose $t1=10 and $t2=11

$t1 - $t2 = -1 = 1111…1 binary
$t0 = 0000...1

1

0

0

0

1

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
64

Implementing SLT (set-less-than)

SLT uses subtraction
slt $t0,$t1,$t2
$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control
perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALU0 Less

Why do we need Set? Could
we use just the Result31?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
65

Supporting BEQ and BNE

“zero detector”BEQ uses subtraction
beq $t0,$t1,LABEL
perform $t0-$t1
result=0 è equality

Setting the control
subtract (Cin=1,Binvert=1)
select result (operation=2)
detect zero result

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
66

Abstracting ALU

§ Note that ALU is a combinational logic

