CS/COE0447: Computer Organization and
Assembly Language

Logic Design Introduction (Brief?)

Appendix B: The Basics of Logic Design

Dept. of Computer Science
University of Pittsburgh

Logic design?

= Digital hardware is implemented by way of /logic design

= Digital circuits process and produce two discrete values: 0 and 1

= Example: 1-bit full adder (FA)

A ——m>

B ——>

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Layered design approach

= Logic design is done using logic gates
= Often we design a desired hardware function using high-level
languages (HDLs) and somewhat higher level than logic gates

= Two approaches in design
* Top down
« Bottom up

Microarchitecture
Function blocks
Logic gates

Transistors

We’ll do logic bottom up

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Transistor as a switch

“ON” “OFF”
X X

X
G AI G=1 G=0

“N”-type TR

—

“P”-type TR

B I U

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

An inverter

\\1II

“P”-type TR | 4'

A. .Y

“"N”-type TR \

\\OII

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

When A =1

\\1II

“P”-type TR 4'
Aii “OFF”

A=1 . . Y=0

ﬁ

% \\ONII
“"N”-type TR _|

\\OII

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

When A =0

“P”-type TR |

“"N”-type TR \

CS/CoE1541: Intro. to Computer Architecture

\\1II

_

\\ONII

]

—

\\OII

. Y=1

\\OFFII

University of Pittsburgh

Abstraction

\\1"

“P"-type TR | 4'

“"N”-type TR

\\0"

CS/CoE1541: Intro. to Computer Architecture

.Y

University of Pittsburgh

Logic gates

2-input AND

2-input OR

2-input NAND

2-input NOR

CS/CoE1541: Intro. to Computer Architecture

|

Y=A&B

Y=A|B

Y=~(A & B)

Y=n~(A | B)

University of Pittsburgh

Describing a function

» Output, = F(Input,, Input,, ..., Inputy_,)
= Outputg = F’(Input,, Input,, ..., Inputy)
= Output. = F’(Input,, Input,, ..., Inputy ;)

= Methods
« Truth table
Sum of products

e Product of sums

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

10

Truth table

Cin
!
N — '
+ ——s
B ———>
|
Ct)ui
Input Output
A B Ci S Cout
0 0 0 0 0
=) 0 0 1 I 1 [0
— 0 1 0 | 1 | 0
=) 0 1 1 0 | 1 |
=) 1 0 0 |_1|— 0
—> 1 0 1 0 1
=) 1 1 0 0 H
=) 1 1 1 | 1 | | 1 |

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

11

Sum of products

Input Output
A B Cin S Cout
0 0 0 0 0
0 0 1 [1 [0
0 1 0 | 1 | 0
0 1 1 0 | 1 |
1 0 0 [1 | 0
1 0 1 0 1
1 1 0 0 H
1 1 1 | 1 | | 1 |

CS/CoE1541: Intro. to Computer Architecture

OR two minterms

“Minterm”
NOT(A) AND NOT(B) AND Cin

Jniversity of Pittsburgh

12

Combinational vs. sequential logic

= Combinational logic = function
« A function whose outputs are dependent only on the current inputs
« As soon as inputs are known, outputs can be determined

= Sequential logic = combinational logic + memory
« Some memory elements (i.e., “state™)
« Outputs are dependent on the current state and the current inputs
« Next state 1s dependent on the current state and the current inputs

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

13

Combinational logic

delay (it takes time to compute)

A 4

inputs outputs

A 4

Outputs are uniquely determined by the inputs at any moment

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
14

Combinational logic

delay (it takes time to compute)

A 4

inputs outputs

A 4

Outputs are uniquely determined by the inputs at any moment

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
15

Sequential logic

delay (it takes time to compute, matched to clock)

inputs

clock
Outputs are determined by current & past inputs (past is “state”)

CS/CoE1541: Intro. to Computer Architecture

outputs

University of Pittsburgh

16

Sequential logic

delay (it takes time to compute, matched to clock)

inputs

clock
Outputs are determined by current & past inputs (past is “state”)

CS/CoE1541: Intro. to Computer Architecture

outputs

University of Pittsburgh

17

Combinational logic

Any combinational logic can be implemented using sum of products
(OR-AND) or product of sums (AND-OR)

= From truth table, derive each output function

= And then we can derive a circuit!! Let’s try it!
- Example: Write circuit for an 1-bit ADDER

= Boolean expressions can be further manipulated (e.g., to =
cost) using various Boolean algebraic rules

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
18

Boolean algebra

Boole, George (1815~1864): mathematician and philosopher;
inventor of Boolean Algebra, the basis of all computer arithmetic

= Binary values: {0,1}
= Two binary operations: AND (%X/-), OR (+)
= One unary operation: NOT (~)

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

19

Boolean algebra

= Binary operations: AND (X/-), OR (+)
« Idempotent
+ aa=ata=a
« Commutative
+ a-b=ba
+ atb=Dbt+a
¢ Associative
+ a(b-c)=(ab)c
+ at(bt+c) = (atb)tc
 Distributive
+ a(btc)=ab+ac
+ at(b-c)=(atb)-(atc)

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

20

Boolean algebra

= De Morgan’s laws

- ~(ab)=~a+~Db —]

* ~(atb)=~a-~b

= More...
- at(ab)=a
- a(atb)=a

e ~~a=a
« at~a=1
* a(~a)=0

CS/CoE1541: Intro. to Computer Architecture

It is not true I ate the sandwich and the soup.

same as:

I didn’t eat the sandwich or I didn’t eat the soup.

It is not true that I went to the store or the library.

same as:

I didn’t go to the store and I didn’t go to the library.

University of Pittsburgh
21

Expressive power

With AND/OR/NOT, we can express any function in Boolean
algebra
Sum (+) of products (-)

= What if we have NAND/NOR/NOT?
= What if we have NAND only?
= What if we have NOR only?

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

22

Using NAND only

A —(A"B)
3 “E.— AMB

~(~(A"B))=A"B

CS/CoE1541: Intro. to Computer Architecture

~(-A"-B)=A +B

University of Pittsburgh

23

Using NOR only (your turn)

= (Can you do 1t?
= NOR s ~(A + B)
« le., We need to write NOT, AND, and OR 1n terms of NOR
NOT AND OR
=~(A+A) =-(~(A+A)+~(B+B)) =—(~(A+B)+~(A+B))
=-AA-A =—(-AA-A+-BA-B) = (A+B)"(A+B)
= —A —~(—A + —B) = A+B
~(~A) ~(-B)
=A"B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

24

Using NOR only (your turn)

- AnB

oE1541: Intro. to Computer Architecture University of Pittsburgh

Now, it’s really your turn....

= How about XOR?
A | B | C_
0 0 0
0 1 1
1 0 1
1 1 0

C=AB+AP’

CS/CoE1541: Intro. to Computer Architecture

-

A

—D-
—-

= %

g
> >

P--c

.

University of Pittsburgh

26

Now, it’s really your turn....

« How about XOR?)

0

AT e | c I —»-
0 0
0

—-
1 1
1
0 1 B - 1
1 0
1

C=A’B +AB’ A —2 ’,
0
b , 0

- o

= S

0
0
1
1

P c

University of Pittsburgh
27

CS/CoE1541: Intro. to Computer Architecture

Simplifying expressions

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 I 1 I
1 0 0 1 0

1 0 1 0 1

1 1 0 0 H
1 1 1 1 I 1 |

. C,,=A’BC, +AB’C, +ABC,’ + ABC,,
.- C,,=BC, +AC, +AB

= Simplification reduces complexity: faster, smaller circuit!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

28

A “tool” to help simplify boolean
expressions
Karn au gh map Like a “slide rule”: Useful but limited

— 9 9 9
Cout =A BCin +AB Cin t ABCin + ABCin A truth table listing “minterms”
Minterms written in Gray code order
A One var value changes betw. col/row
BC, 0 1
00 0 0 Build from the initial boolean expr.
/ Put a “1” where a minterm is true
01 0 1 ACin E.g..,AB°C; has a1
groqaae ' Now, to simplify:
:] : u // o
11 1 -t 1] Look for adjacent max rectangular
P s asl s groups with power of 2 elements.
In such a group, some var is {0,1}
10 0 1 N B Eliminate that variable

Here’s another one!

Groups can be vertical too.
Cout — +AB+ ACl n They can even “wrap around”
They can also overlap
Diagonals aren’t allowed

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

BCi,

00

01

11

10

C,.=A’BC, + AB’C, + ABC,’ + ABC,
S=A’B’C, + A’BC,’ + AB’C,’ + ABC,,

0 1

0 0

0 : 1
LEELLEEEEEE .;:.'.'.'.'.'.'.'F'
-1 !
S ansassessnnhans Perzrrarl:

0 Pl

Cout —

AC,,

AB

+AB+AC,,

CS/CoE1541: Intro. to Computer Architecture

A
BC,, 0 1
00 0 Pl
or | i1 @ 0
11 0 T
10 Pl 0

S = A’B’C,, + A’BC,’
+AB’C,’ + ABC;,

University of Pittsburgh
30

Four (or more?) Variables

CD
m Can you minimize this one?
0 0

m 0 0 In AB: B is both {0,1}

AB 0 0 0 0 In CD: C is both {0,1}
Eliminate B, C
0 I ! 0 Thus, we have just AD
CD
m Can you minimize this one?

I o o o o C,D both have {0, 1}

1 1 1 1 Eliminate A,C,D

0 0 0 0 Thus, we have just B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

31

Four (or more?) Variables

CD
m Can you minimize this one?
0 1

00 U |
Combine on top row
AB 0 0 0 0 Combine on bottom row
0 0 0 0 ABD’

These terms can now combine
Thus, we have B’D’

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
32

In-class Example

= A device called a “7 segment LED digit”

= There are 8 LEDs — one for seven “segments” of a numeral and 1 for

a decimal point

= Problem

« Given a 3-bit number, draw the corresponding numeral
« E.g., 000 is the numeral 0, 001 is numeral 1 and so forth

= Solution

E

« Create a Boolean function for each segment. Ignore the decimal point.

« Boolean function over three inputs for the 3-bit number.

Let’s try it!!

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

33

)

CS/CoE1541: Intro. to Computer Architecture

Segments numbered d0 to d7

Hex Digit LED

7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

University of Pittsburgh

|

CS/CoE1541: Intro. to Computer Architecture

d4

Numeral 0

01110111
do d7
Hex Digit LED

7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

University of Pittsburgh

do d1

d7

CS/CoE1541: Intro. to Computer Architecture

I
]
]
®
‘

Numeral 1
00010100

do d7

Hex Digit LED

7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

University of Pittsburgh

do

TA

CS/CoE1541: Intro. to Computer Architecture

d5

d4

Numeral 2
10110011
do d7
Hex Digit LED

7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

University of Pittsburgh

do

T i

-

CS/CoE1541: Intro. to Computer Architecture

Numeral 3
10110110

do

Hex Digit LED

d7

7 segments, 1 decimal point
Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0

to 9

University of Pittsburgh

do di
. Numeral 4

d2
* ? T 11010100
®

do d7

Hex Digit LED
7 segments, 1 decimal point
] Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9

*—e

d7 dé6 ds d4

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

a0 d.l d2 23 Numeral 5
? 11100110
do d7

Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
State: 0=OFF, 1=ON
“Draw” numbers 0 to 9
do6 ds

d7 d4

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

d7 dé6 ds d4

CS/CoE1541: Intro. to Computer Architecture

Numeral 6
11000111
do d7

Hex Digit LED

7 segments, 1 decimal point

Turn each segment on/off
State: 0=OFF, 1=ON

“Draw” numbers 0 to 9

University of Pittsburgh

d0 d.l d2 d3 Numeral 7
? 00110100
do d7
o
e]
Hex Digit LED
7 segments, 1 decimal point
Turn each segment on/off
| ? | State: 0=OFF, 1=ON
l “Draw” numbers 0 to 9
d7 dé ds d4

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

In-class Example

= Create a truth table

= Inputs are numbered 10 to 12 (3 bits)

= Outputs are numbered dO to d7, corresponding to segments
= “Draw” the numerals by setting d0 to d7 to Is or Os.

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

43

inputs

outputs

|
N
i @
[—
[
=)

do

d1

d2

d3

d4

d5

dé6

d7

— === |o|lo|lo|lo
—lo|=|lo|—=|lo|—=|o

\’-~oo»—x»—~oo

Input: 3-bit number

CS/CoE1541: Intro. to Computer Architecture

<

Outputs: Segments for the LED hex digit

University of Pittsburgh

inputs outputs

i2 |il |i0 |dO |dl |d2 |d3 |d4 |dS |dé6 |d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Fill in the truth table for each numeral

Numerals 0 to 2 are shown.
Can you complete 3 to 7?

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

inputs outputs

i2 |il [i0 |d0O (dl |d2 |d3 |(d4 |[dS |d6 |d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0
Completed truth table

Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

inputs outputs

i2 |il [i0 |d0O (dl |d2 |d3 |(d4 |[dS |d6 |d7
0 0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1 1
1 1 1 0 0 1 1 0 1 0 0
Completed truth table

Now, write down the minimal (simplified) Boolean functions
Use a K-map to minimize each one!

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

i1, i0

00

01

11

10

i2

Use a K-map for each output function — d0 to d7

Let’s start with d(

We’ll only do a few — d0, d3 and d5

Can you do the rest on your own???

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

i1, i0

01

Function d0

10

11

d7

dé6

d5

00

d4

d3

d2

dl

i2

do

i0

il

i2

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

Function d0 i1, i0
00 01 1 10
9 0 0 1 1
] 1 0 1
2 [i1 |i0 |d0o |[d1 |d2 |d3 |d4 |d5 |d6 |d7 3 terms
o (o o Jo [1 |t |1 Jo |1 |1 |1 12’1
i2i1°
o (o |1 Jo |o o [1 Jo |1 Jo |o 1i0°
o (1 Jo [t fo |1 |1 Jo |o |1 |1
o |1 1 |f1 Jo |1 |1 |o |1 |1 |o
1 (o o |1 |1 |o |1 |o |1 |o [|o
1 o (1 ft |t |1 Jo Jo |1 |1 o
1 (1 o tt |t fo Jo |o |1 |1 |1
1 {1 (1 Yo o |1 |1 Jo |1 |o |o

d0=i2il + i2il + i2i0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

i1, i0

01

Function d3

10

11

d7

dé6

d5

00

d4

d3

d2

dl

i2

do

i0

il

i2

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

Function d3 i1, i0
00 01 11 10
i2 | 1 1 1 1

1 0 1 0

i2 (il |10 |dO |[dl |(d2 |d3 (d4 (dS5 |d6 |d7

0 0 0 0 1 1 1 0 1 1 1

0 0 1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 1 0 0 1 1

0 1 1 1 0 1 1 0 1 1 0

1 0 0 1 1 0 1 0 1 0 0

1 0 1 1 1 1 0 0 1 1 0

1 1 0 1 1 0 0 0 1 1 1

1 1 1 0 0 1 1 0 1 0 0

d3=i2 + i1i0 + i1i0

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

i1, i0

01

Function d5

10

11

d7

dé6

ds

00

d4

d3

d2

dl

i2

do

i0

il

i2

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

i1, i0

01

Function d5

10

11

d7

dé6

ds

00

d4

d3

d2

dl

i2

do

i0

il

i2

d5=il +i0 +i2

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Completed Circuit with all functions d0 to d7

Inputs
|,_>i.—_|5 HE RJ

11 11— 1 Tt
v VY Y v vl |y

=
=\

2
2
“;?
2
3

Outputs to the LED hex digit

See example: LEDhexdigit.circ

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Multiplexor (aka MUX)
An example, yet VERY usetul circuit!

A S |A |B L’
00 K
Y 01 K
1 [(x [0
B 1 |x |1
Y=S’A+SB
S=0
Y=(S) 7?B:A;
hen S S >
whnen » = N
0: output A A Y
1: output B
B

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
56

A 3 2'bit MUX Use 32 1-bit muxes

Each mux selects 1 bit
S is connected to each mux

Select Select
32
A 32\ A3 —
M M
u 22\ ¢ u |+ c31
g 32 X B3l — |

A30 —

C30

B30 —

—
M
u
X .

A0 —»
M
u co
X

BO —=

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array
of 32 1-bit multiplexors

CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh
57

Building a 1-bit ALU

= ALU = arithmetic logic unit = arithmetic unit + logic unit

Operation
Carryln ‘
Operation a—1eo— \ (0
P " _J 0
a
0
> o
Result 1 » Result
1
b —HD !
> . 5
b |+—e—— ./
Y
CarryOut
CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

58

Building a 32-bit ALU

CS/CoE1541: Intro. to Computer Architecture

Operation
Carryln
—————%
l Y
a0 —, Carryln
bO ALUO > ResultO
CarryOut
—————¢
\ Y
aj —| Carryln
b1 ALUA » Resulti
CarryOut
—————
Y Y
a2__,| Carryln
b2 ALU2 » Result2
| CarryOut
a3i_| Carryln
b31 | ALUS31 > Result31

University of Pittsburgh

59

Implementing “sub”

Binvert

Operation

Carryln

Binvert=1
Carryln=1 for 1% 1-bit ALU
Operation=2

y

’
') w

1 » Result

\

|

CarryOut

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh
60

Implementing NAND and NOR

Ainvert Operation
‘ Binvert Carryln

NOR:
NOT (A OR B)

by DeMorgan’s Law:
(NOT A) AND (NOT B)

Thus,
Operation=0,
Ainvert=1,
Binvert=1 b

o
J

And, NAND???

CS/CoE1541: Intro. to Computer Architecture

Y
CarryOut

> Result

University of Pittsburgh

61

Implementing SLT (set-less-than)

Ainvert Operation
Binvert Carryln |

0

100

Less 3

J
CarryOut

1-bit ALU for bits 0~30

CS/CoE1541: Intro. to Computer Architecture

Result

Ainvert Operation
Binvert Carryln ’
a — >
0 _J\ (0 \
9
-) 1
o [
y » Result
b —o —
+ 2
1
Less - 3
» Se
v Y
Overflow Overflow
detection

1-bit ALU for bit 31

University of Pittsburgh
62

Implementing SLT (set-less-than)

SLT uses subtraction

slt $t0,$t1,$t2

$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALUO Less

Consider
Suppose $t1=10 and $t2=11

$t1 - $t2 =-1 =1111...1 binary
$t0 = 0000...1

CS/CoE1541: Intro. to Computer Architecture

Ainvert

Binvert Operation
Carryln
! { ‘
a0—| Carryln > Result0]
b0 — ALUO
> Less
CarryOut
l Y
al— Carryln » Result1 0
b1 — ALUA
00— Less
CarryOut
1y
a2 —| Carryln » Result2 0
b2 — ALU2
00— Less
CarryOut
i : : Carryln
1 |
a3i—»| Carryln ~ Resultai 0
b31—» ALU31 Set
00— Less = Overflow
1

University of Pittsburgh

63

Implementing SLT (set-less-than)

SLT uses subtraction

slt $t0,$t1,$t2

$t1<$t2: $t1-$t2 gives negative result
set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1)
select Less as output (Operation=3)
ALU31’s Set connected to ALUO Less

Why do we need Set? Could
we use just the Result31?

CS/CoE1541: Intro. to Computer Architecture

Ainvert

Binvert Operation
Carryln
! l ‘
a0—| Carryin » ResultO
b0 — ALUO
> Less
CarryOut
l Y
al— Carryln » Result1
b1 — ALUA
00— Less
CarryOut
TN
a2 —| Carryln » Result2
b2 — ALU2
00— Less
CarryOut
i i : : Carryln
1]
a31— Carryln » Result31
b31— ALU3A Set
00— Less = Overflow

University of Pittsburgh

64

Supporting BEQ and BNE

Bnegate Operation
Ainvert
¥ l l
a0 — Carryln Resulio
b0—»| ALUO gst * - “ ’
. zero detector
BEQ uses subtraction > Less L
CarryOut
beq $t0,$t1,LABEL 4
perform $t0-$t1 ey
result=0 =» equality al—»| Carryln
b1 ALUA Resulti | _
00— Less
CarryOut Zero
Setting the control l
subtract (Cin=1,Binvert=1) 1y
. a2 —= Carryln
select result (operation=2) b2 ALU2 | Result2 N
detect zero result 0— Less
CarryQut
; : 3[: i Carryln I :
a31—»| Carryin Result31 . .
b31—s| ALU3{ Set
00— Less > Overflow

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

65

Abstracting ALU

ALU operation

ALU

N

b —»

CarryOut

L Zero
— Result

— Overflow

= Note that ALU 1s a combinational logic

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

66

