CS/COE0447: Computer Organization and Assembly Language

Logic Design Introduction (Brief?)

Appendix B: The Basics of Logic Design

Dept. of Computer Science University of Pittsburgh

Logic design?

- Digital hardware is implemented by way of *logic design*
- Digital circuits process and produce two discrete values: 0 and 1
- Example: 1-bit full adder (FA)

Layered design approach

- Logic design is done using logic gates
- Often we design a desired hardware function using high-level languages (HDLs) and somewhat higher level than logic gates
- Two approaches in design
 - Top down
 - Bottom up

We'll do logic bottom up

Transistor as a switch

An inverter

When A = 1

When A = 0

Abstraction

Logic gates

2-input AND

Y=A & B

2-input OR

Y=A | B

2-input NAND

Y=~(A & B)

2-input NOR

 $Y = \sim (A \mid B)$

Describing a function

- Output_A = $F(Input_0, Input_1, ..., Input_{N-1})$
- Output_B = $F'(Input_0, Input_1, ..., Input_{N-1})$
- Output_C = $F''(Input_0, Input_1, ..., Input_{N-1})$
- •
- Methods
 - Truth table
 - Sum of products
 - Product of sums

Truth table

		Input	Out	tput	
	А	В	C _{in}	S	C _{out}
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

Sum of products

Input			Out	put
А	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

•
$$S = A'B'C_{in} + A'BC_{in} + AB'C_{in}' + ABC_{in}$$

•
$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + AB'$$
OR two minterms

"Minterm"
NOT(A) AND NOT(B) AND Cin

CS/CoE1541: Intro. to Computer Architecture

Jniversity of Pittsburgh

Combinational vs. sequential logic

- Combinational logic = function
 - A function whose outputs are dependent only on the current inputs
 - As soon as inputs are known, outputs can be determined
- Sequential logic = combinational logic + memory
 - Some memory elements (i.e., "state")
 - Outputs are dependent on the current state and the current inputs
 - Next state is dependent on the current state and the current inputs

Combinational logic

inputs

delay (it takes time to compute)

outputs

Outputs are uniquely determined by the inputs at any moment

Combinational logic

delay (it takes time to compute)

Outputs are uniquely determined by the inputs at any moment

Sequential logic

delay (it takes time to compute, matched to clock)

inputs outputs next current state state clock

Outputs are determined by current & past inputs (past is "state")

Sequential logic

delay (it takes time to compute, matched to clock)

Outputs are determined by current & past inputs (past is "state")

Combinational logic

- Any combinational logic can be implemented using sum of products (OR-AND) or product of sums (AND-OR)
- Input-output relationship can be defined in a truth table format
- From truth table, derive each *output function*
- And then we can derive a circuit!! Let's try it!
 - Example: Write circuit for an 1-bit ADDER

Boolean algebra

- Boole, George (1815~1864): mathematician and philosopher; inventor of Boolean Algebra, the basis of all computer arithmetic
- Binary values: $\{0,1\}$
- Two binary operations: AND (\times/\cdot) , OR (+)
- One unary operation: NOT (~)

Boolean algebra

- Binary operations: AND (\times/\cdot) , OR (+)
 - Idempotent

•
$$a \cdot a = a + a = a$$

- Commutative
 - $a \cdot b = b \cdot a$
 - a+b = b+a
- Associative
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - a+(b+c) = (a+b)+c
- Distributive
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - $a+(b\cdot c) = (a+b)\cdot (a+c)$

Boolean algebra

De Morgan's laws

•
$$\sim$$
(a·b) = \sim a + \sim b

•
$$\sim$$
(a+b) = \sim a· \sim b

More...

•
$$a+(a\cdot b) = a$$

•
$$a \cdot (a+b) = a$$

•
$$a + \sim a = 1$$

•
$$a \cdot (\sim a) = 0$$

It is not true I ate the sandwich and the soup.

same as:

I didn't eat the sandwich or I didn't eat the soup.

It is not true that I went to the store or the library.

same as:

I didn't go to the store and I didn't go to the library.

Expressive power

- With AND/OR/NOT, we can express any function in Boolean algebra
 - Sum (+) of products (\cdot)
- What if we have NAND/NOR/NOT?
- What if we have NAND only?
- What if we have NOR only?

Using NAND only

Using NOR only (your turn)

- Can you do it?
- NOR is $\neg (A + B)$
 - I.e., We need to write NOT, AND, and OR in terms of NOR

<u>NOT</u>	AND	<u>OR</u>
$= \neg(A + A)$	$= \neg(\neg(A + A) + \neg(B + B))$	$= \neg(\neg(A + B) + \neg(A + B))$
= ¬A ^ ¬A	= ¬ (¬A ^ ¬A + ¬B ^ ¬B)	$= (A + B) ^ (A + B)$
= ¬A	$= \neg(\neg A + \neg B)$	= A + B
	= ¬(¬A) ^ ¬(¬B)	
	= A ^ B	

Using NOR only (your turn)

Now, it's really your turn....

• How about XOR?

\rightarrow

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

$$C = A'B + AB'$$

Now, it's really your turn....

• How about XOR?

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

$$C = A'B + AB'$$

Simplifying expressions

Input			Output	
Α	В	C _{in}	S	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

•
$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

$$\quad \mathbf{C}_{\text{out}} = \mathbf{B}\mathbf{C}_{\text{in}} + \mathbf{A}\mathbf{C}_{\text{in}} + \mathbf{A}\mathbf{B}$$

Simplification reduces complexity: faster, smaller circuit!

Karnaugh map

$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

$$C_{out} = BC_{in} + AB + AC_{in}$$

A "tool" to help simplify boolean expressions

Like a "slide rule": Useful but limited

A truth table listing "minterms"

Minterms written in Gray code order

One var value changes betw. col/row

Build from the initial boolean expr. Put a "1" where a minterm is true

E.g., AB'C_{in} has a 1

Now, to simplify:

Look for adjacent max rectangular groups with power of 2 elements.

In such a group, some var is {0,1} Eliminate that variable

Here's another one! Groups can be vertical too. They can even "wrap around" They can also overlap Diagonals aren't allowed

•
$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

•
$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}$$

$$C_{out} = BC_{in} + AB + AC_{in}$$

$$S = A'B'C_{in} + A'BC_{in}'$$
$$+ AB'C_{in}' + ABC_{in}$$

Four (or more?) Variables

1		1	Г
1	ب	J	L

	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	1	0
10	0	1	1	0

Can you minimize this one?

In AB: B is both {0,1} In CD: C is both {0,1}

Eliminate B, C Thus, we have just AD

CD

	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

Can you minimize this one?

C,D both have {0,1} **A** has {0,1}

Eliminate A,C,D Thus, we have just B

AB

AB

Four (or more?) Variables

		CD				
		00	01	11	10	
	00	1	0	0	1	
AB	01	0	0	0	0	
	11	0	0	0	0	
	10	1	0	0	1	

Can you minimize this one?

Combine on top row Combine on bottom row

A'B'D' AB'D'

These terms can now combine Thus, we have B'D'

Karnaugh Maps (K-Maps) are a simple calculation tool.

In practice, sophisticated logic synthesis algorithms/tools are used.

In-class Example

A device called a "7 segment LED digit"

• There are 8 LEDs – one for seven "segments" of a numeral and 1 for

a decimal point

Problem

- Given a 3-bit number, draw the corresponding numeral
- E.g., 000 is the numeral 0, 001 is numeral 1 and so forth

Solution

- Create a Boolean function for each segment. Ignore the decimal point.
- Boolean function over three inputs for the 3-bit number.
- Let's try it!!

Numeral 0 0 1 1 1 0 1 1 1 d0 d7

Hex Digit LED

7 segments, 1 decimal point Turn each segment on/off State: 0=OFF, 1=ON "Draw" numbers 0 to 9

Numeral 1 0 0 0 1 0 1 0 0 d0 d7

Hex Digit LED

7 segments, 1 decimal point Turn each segment on/off State: 0=OFF, 1=ON "Draw" numbers 0 to 9

Numeral 2 1 0 1 1 0 0 1 1 d0 d7

Hex Digit LED

Numeral 3 1 0 1 1 0 1 1 0 d0 d7

Hex Digit LED

Numeral 4 1 1 0 1 0 1 0 0 d0 d7

Hex Digit LED

Numeral 5 1 1 1 0 0 1 1 0 d0 d7

Hex Digit LED

Numeral 6 1 1 0 0 0 1 1 1 d0 d7

Hex Digit LED

Numeral 7 0 0 1 1 0 1 0 0 d0 d7

Hex Digit LED

In-class Example

- Create a truth table
- Inputs are numbered i0 to i2 (3 bits)
- Outputs are numbered d0 to d7, corresponding to segments
- "Draw" the numerals by setting d0 to d7 to 1s or 0s.

	inpu	its								
i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

Input: 3-bit number Outputs: Segments for the LED hex digit

inputs outputs

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d 7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

Fill in the truth table for each numeral Numerals 0 to 2 are shown.

Can you complete 3 to 7?

inputs outputs

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

Completed truth table Now, write down the *minimal* (simplified) Boolean functions Use a K-map to minimize each one! inputs outputs

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

Completed truth table Now, write down the *minimal* (simplified) Boolean functions Use a K-map to minimize each one!

i1, i0

		00	01	11	10
i2	0				
	1				

Use a K-map for each output function – d0 to d7

Let's start with d0 We'll only do a few – d0, d3 and d5

Can you do the rest on your own???

i1, i0

i2

	00	01	11	10
0	0	0	1	1
1	1	1	0	1

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

i1, i0

		00	01	11	10	
i2	0	0	0	1	1	
[1	1	1	0	1	

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d 7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

3 terms i2'i1 i2i1' I2i0'

$$d0=\overline{i2}i1 + i2i\overline{1} + i2i\overline{0}$$

i1, i0

i2 00 01 11 10 1 1 1 1 1 1 1 0 10

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

i1, i0

		00	01	11	10
i2	0	1	1	1	1
	1	1	0	1	0

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

$$d3=i\overline{2}+i\overline{1}i\overline{0}+i\overline{1}i0$$

CS/CoE1541: Intro. to Computer Architecture

i1, i0

i2

	00	01	11	10
0	1	1	1	0
1	1	1	1	1

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

i1, i0

		00	01	11	10
i2	0	1	1	1	0
	1	1	1	1	1

i2	i1	i0	d0	d1	d2	d3	d4	d5	d6	d7
0	0	0	0	1	1	1	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1	0	1	0	0
1	0	1	1	1	1	0	0	1	1	0
1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	0	1	0	0

$$d5 = i\overline{1} + i0 + i2$$

Completed Circuit with all functions d0 to d7

Inputs \$\text{Inputs}\$ \$\text{Imputs}\$ \$\text{Imputs}\$

Outputs to the LED hex digit

See example: LEDhexdigit.circ

Multiplexor (aka MUX) An example, yet VERY useful circuit!

Y=S'A+SB

A 32-bit MUX

Use 32 1-bit muxes
Each mux selects 1 bit
S is connected to each mux

a. A 32-bit wide 2-to-1 multiplexor

 The 32-bit wide multiplexor is actually an array of 32 1-bit multiplexors

Building a 1-bit ALU

• ALU = arithmetic logic unit = arithmetic unit + logic unit

Building a 32-bit ALU

Implementing "sub"

Implementing NAND and NOR

NOR:

NOT (A OR B) by DeMorgan's Law:

(NOT A) AND (NOT B)

Thus,

Operation=0,

Ainvert=1,

Binvert=1

And, NAND???

Implementing SLT (set-less-than)

1-bit ALU for bits 0~30

1-bit ALU for bit 31

Implementing SLT (set-less-than)

SLT uses subtraction

slt \$t0,\$t1,\$t2 \$t1<\$t2: \$t1-\$t2 gives negative result set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1) select Less as output (Operation=3) ALU31's Set connected to ALU0 Less

Consider

Suppose \$t1=10 and \$t2=11

CS/CoE1541: Intro. to Computer Architecture

Implementing SLT (set-less-than)

SLT uses subtraction

slt \$t0,\$t1,\$t2 \$t1<\$t2: \$t1-\$t2 gives negative result set is 1 when negative

Setting the control

perform subtraction (Cin=1,Binvert=1) select Less as output (Operation=3) ALU31's Set connected to ALU0 Less

Why do we need Set? Could we use just the Result31?

CS/CoE1541: Intro. to Computer Architecture

Supporting BEQ and BNE

BEQ uses subtraction

beq \$t0,\$t1,LABEL perform \$t0-\$t1 result=0 → equality

Setting the control

subtract (Cin=1,Binvert=1) select result (operation=2) detect zero result

Abstracting ALU

Note that ALU is a combinational logic