Binary division

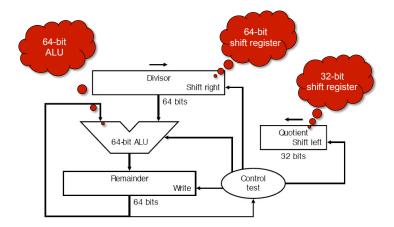
- quotient = dividend / divisor, with a remainder
- dividend = divisor × quotient + remainder
- Given dividend and divisor, we want to obtain quotient (Q) and remainder (R)
- We will start from our paper & pencil method

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

2

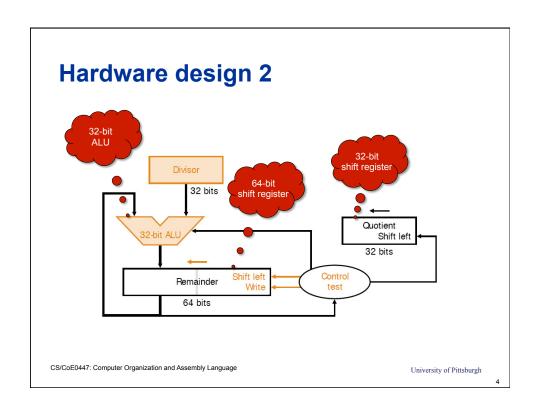
Hardware design 1

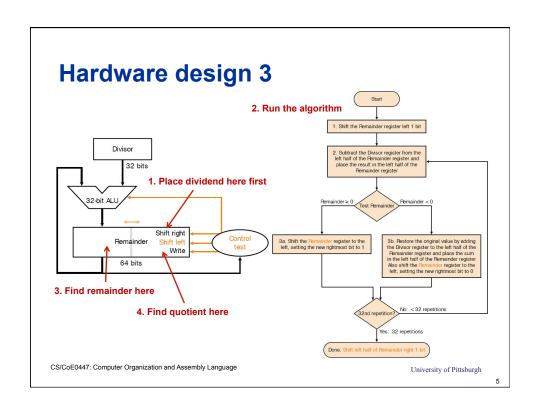


CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

3





Example

Let's do 0111/0010 (7/2) – unsigned

Iteration	Divisor	Hardware design 3	
		Step	Remainder
0	0010	initial values	0000 0111
		shift remainder left by 1	0000 1110
1	0010	remainder = remainder – divisor	1110 1110
		(remainder<0) ⇒ +divisor; shift left; r0=0	0001 1100
2	0010	remainder = remainder – divisor	1111 1100
		(remainder<0) ⇒ +divisor; shift left; r0=0	0011 1000
3	0010	remainder = remainder – divisor	0001 1000
		(remainder>0) ⇒ shift left; r0=1	0011 0001
4	0010	remainder = remainder – divisor	0001 0001
		(remainder>0) ⇒ shift left; r0=1	0010 0011
done	0010	shift "left half of remainder" right by 1	0001 0011

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

6

Restoring division

- The three hardware designs we saw are based on the notion of "restoring division"
 - · At first, attempt to subtract divisor from dividend
 - If the result of subtraction is negative it rolls back by adding divisor
 - This step is called "restoring"
- It's a "trial-and-error" approach; can we do better?

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

7

Non-restoring division

- Let's revisit the restoring division designs
 - Given remainder R (R<0) after subtraction
 - By adding divisor D back, we have (R+D)
 - After shifting the result, we have 2×(R+D)=2×R+2×D
 - If we subtract the divisor in the next step, we have 2×R+2×D-D =2×R+D
- This is equivalent to
 - · Left-shifting R by 1 bit and then adding D!
- There's a "special case" when you finish with a negative
 - The negative value must be restored (add D back to R)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

8

Example, non-restoring division

Let's again do 0111/0010 (7/2) – unsigned

Iteration	Divisor	Hardware design 3, non-restoring	
		Step	Remainder
0	0010	initial values	0000 0111
		shift remainder left by 1	0000 1110
1	0010	remainder = remainder – divisor	1110 1110
		(remainder<0) ⇒ shift left; r0=0	1101 1100
2	0010	remainder = remainder + divisor	1111 1100
		(remainder<0) ⇒ shift left; r0=0	1111 1000
3	0010	remainder = remainder + divisor	0001 1000
		(remainder>0) ⇒ shift left; r0=1	0011 0001
4	0010	remainder = remainder – divisor	0001 0001
		(remainder>0) ⇒ shift left; r0=1	0010 0011
done	0010	shift "left half of remainder" right by 1	0001 0011

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

9