Binary division
= quotient = dividend / divisor, with a remainder
= dividend = divisor x quotient + remainder

= Given dividend and divisor, we want to obtain quotient (Q) and
remainder (R)

= We will start from our paper & pencil method

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Hardware design 1

64-bit

64-bit shift register
ALU

—
Divisor b 32-bit

() Shift right shift register
64 bits

Quotient
Shift left

32 bits

64-bit ALU

Remainder

Write

64 bits

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Hardware design 2

32-bit

Divisor shift register
O 32 bi 64-bit
its i ;
ry shift register e
Q@ «—
o
Quotient
32-it ALU @ Shft left
(] 32 bits
—
2.
Remainder ‘\L ,“efa
I 64 bits

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

4
Hardware design 3
2. Run the algorithm
| 1. Shift the Remainder register left 1 bit |
Divisor 2. Subtract the Divisor register from the
left half of the Remainder register and
32 bits place the result in the left half of the
Femainder register
1. Place dividend here first
) /
32-bit ALU Remainder = 0 Remainder < 0
Test Remainder
Shift right -
Remainder Shift left Control 3a. Shift the Femainder register to the 3b. Restore the original value by adding
Wit left, setting the new rightmost bt to 1 the Divisor register to the left half of the
p VVrite Remainder register and place the sum
- in the left half of the Remainder register.
I 64 bits \ Ao shift the Femainder register to the
left, setting the new rightmost bit to 0
3. Find remainder here
4. Find quotient here G2nd ropetition)> <32 repetitions
Yes: 32 repetitions
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
5

2)»

Example

, .
= Let’'s do 0111/0010 (7/2) — unsigned
Hardware design 3
Iteration Divisor -
Step Remainder
initial values 0000 0111
0 0010
shift remainder left by 1 0000 1110
remainder = remainder — divisor 1110 1110
1 0010
(remainder<0) = +divisor; shift left; r0=0 0001 1100
remainder = remainder — divisor 1111 1100
2 0010
(remainder<0) = +divisor; shift left; r0=0 0011 1000
remainder = remainder — divisor 0001 1000
3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder — divisor 0001 0001
4 0010
(remainder>0) = shift left; ro=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Restoring division

The three hardware designs we saw are based on the notion

of “restoring division”
+ At first, attempt to subtract divisor from dividend
- If the result of subtraction is negative — it rolls back by adding divisor
« This step is called “restoring”
= It's a “trial-and-error” approach; can we do better?
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

3)

Non-restoring division

= Let’s revisit the restoring division designs
« Given remainder R (R<0) after subtraction
+ By adding divisor D back, we have (R+D)
+ After shifting the result, we have 2x(R+D)=2xR+2xD

+ If we subtract the divisor in the next step,
we have 2xR+2xD-D =2xR+D

= This is equivalent to
 Left-shifting R by 1 bit and then adding D!

= There’s a “special case” when you finish with a negative
« The negative value must be restored (add D back to R)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

Example, non-restoring division

= Let's again do 0111/0010 (7/2) — unsigned

Hardware design 3, non-restoring
Iteration Divisor "
Step Remainder
initial values 0000 0111
0 0010
shift remainder left by 1 0000 1110
remainder = remainder — divisor 1110 1110
1 0010
(remainder<0) = shift left; r0=0 1101 1100
remainder = remainder + divisor 1111 1100
2 0010
(remainder<0) = shift left; r0=0 1111 1000
remainder = remainder + divisor 0001 1000
3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder — divisor 0001 0001
4 0010
(remainder>0) = shift left; r0=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011
CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh

4>

