
1

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
2

Binary division

§  quotient = dividend / divisor, with a remainder

§  dividend = divisor × quotient + remainder

§  Given dividend and divisor, we want to obtain quotient (Q) and
remainder (R)

§  We will start from our paper & pencil method

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
3

Hardware design 1

64-bit
shift register 64-bit

ALU

32-bit
shift register

2

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
4

Hardware design 2

64-bit
shift register

32-bit
ALU

32-bit
shift register

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
5

Hardware design 3

1. Place dividend here first

2. Run the algorithm

3. Find remainder here

4. Find quotient here

3

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
6

Example

§  Let’s do 0111/0010 (7/2) – unsigned

Iteration Divisor
Hardware design 3

Step Remainder

0 0010
initial values 0000 0111

shift remainder left by 1 0000 1110

1 0010
remainder = remainder – divisor 1110 1110

(remainder<0) ⇒ +divisor; shift left; r0=0 0001 1100

2 0010
remainder = remainder – divisor 1111 1100

(remainder<0) ⇒ +divisor; shift left; r0=0 0011 1000

3 0010
remainder = remainder – divisor 0001 1000

(remainder>0) ⇒ shift left; r0=1 0011 0001

4 0010
remainder = remainder – divisor 0001 0001

(remainder>0) ⇒ shift left; r0=1 0010 0011

done 0010 shift “left half of remainder” right by 1 0001 0011

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
7

Restoring division

§  The three hardware designs we saw are based on the notion
of “restoring division”
•  At first, attempt to subtract divisor from dividend
•  If the result of subtraction is negative – it rolls back by adding divisor

"   This step is called “restoring”

§  It’s a “trial-and-error” approach; can we do better?

4

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
8

Non-restoring division

§  Let’s revisit the restoring division designs
•  Given remainder R (R<0) after subtraction
•  By adding divisor D back, we have (R+D)
•  After shifting the result, we have 2×(R+D)=2×R+2×D
•  If we subtract the divisor in the next step,

we have 2×R+2×D–D =2×R+D

§  This is equivalent to
•  Left-shifting R by 1 bit and then adding D!

§  There’s a “special case” when you finish with a negative
•  The negative value must be restored (add D back to R)

CS/CoE0447: Computer Organization and Assembly Language University of Pittsburgh
9

Example, non-restoring division

§  Let’s again do 0111/0010 (7/2) – unsigned

Iteration Divisor
Hardware design 3, non-restoring

Step Remainder

0 0010
initial values 0000 0111

shift remainder left by 1 0000 1110

1 0010
remainder = remainder – divisor 1110 1110

(remainder<0) ⇒ shift left; r0=0 1101 1100

2 0010
remainder = remainder + divisor 1111 1100

(remainder<0) ⇒ shift left; r0=0 1111 1000

3 0010
remainder = remainder + divisor 0001 1000

(remainder>0) ⇒ shift left; r0=1 0011 0001

4 0010
remainder = remainder – divisor 0001 0001

(remainder>0) ⇒ shift left; r0=1 0010 0011

done 0010 shift “left half of remainder” right by 1 0001 0011

