Binary division
= quotient = dividend / divisor, with a remainder
= dividend = divisor x quotient + remainder

= Given dividend and divisor, we want to obtain quotient (Q) and
remainder (R)

= We will start from our paper & pencil method
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Hardware design 1
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Hardware design 2
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Hardware design 3
2. Run the algorithm
| 1. Shift the Remainder register left 1 bit |
Divisor 2. Subtract the Divisor register from the
left half of the Remainder register and
32 bits place the result in the left half of the
Femainder register
1. Place dividend here first
) /
32-bit ALU Remainder = 0 Remainder < 0
Test Remainder
Shift right -
Remainder  Shift left Control 3a. Shift the Femainder register to the 3b. Restore the original value by adding
Wit left, setting the new rightmost bt to 1 the Divisor register to the left half of the
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- in the left half of the Remainder register.
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Example

, .
= Let’'s do 0111/0010 (7/2) — unsigned
Hardware design 3
Iteration Divisor -
Step Remainder
initial values 0000 0111
0 0010
shift remainder left by 1 0000 1110
remainder = remainder — divisor 1110 1110
1 0010
(remainder<0) = +divisor; shift left; r0=0 0001 1100
remainder = remainder — divisor 1111 1100
2 0010
(remainder<0) = +divisor; shift left; r0=0 0011 1000
remainder = remainder — divisor 0001 1000
3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder — divisor 0001 0001
4 0010
(remainder>0) = shift left; ro=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011
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Restoring division

The three hardware designs we saw are based on the notion

of “restoring division”
+ At first, attempt to subtract divisor from dividend
- If the result of subtraction is negative — it rolls back by adding divisor
« This step is called “restoring”
= It's a “trial-and-error” approach; can we do better?
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Non-restoring division

= Let’s revisit the restoring division designs
« Given remainder R (R<0) after subtraction
+ By adding divisor D back, we have (R+D)
+ After shifting the result, we have 2x(R+D)=2xR+2xD

+ If we subtract the divisor in the next step,
we have 2xR+2xD-D =2xR+D

= This is equivalent to
 Left-shifting R by 1 bit and then adding D!

= There’s a “special case” when you finish with a negative
« The negative value must be restored (add D back to R)
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Example, non-restoring division

= Let's again do 0111/0010 (7/2) — unsigned

Hardware design 3, non-restoring
Iteration Divisor "
Step Remainder
initial values 0000 0111
0 0010
shift remainder left by 1 0000 1110
remainder = remainder — divisor 1110 1110
1 0010
(remainder<0) = shift left; r0=0 1101 1100
remainder = remainder + divisor 1111 1100
2 0010
(remainder<0) = shift left; r0=0 1111 1000
remainder = remainder + divisor 0001 1000
3 0010
(remainder>0) = shift left; r0=1 0011 0001
remainder = remainder — divisor 0001 0001
4 0010
(remainder>0) = shift left; r0=1 0010 0011
done 0010 shift “left half of remainder” right by 1 0001 0011
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