
Name __

1 of 5

CS/COE 0447 Example Problems for Exam 2

Fall 2010

1. This time, consider a non-leaf function lisa. This function has no arugments or return value.

The return address is on the stack at offset 12 and the activation record is 12 bytes. Give a
sequence of three MIPS instructions that cause a function return.

2. Suppose the stack pointer ($sp) has the value 0xFF0000020 and the activation record has two

halfword fields. Give a single instruction that will load the second field in the activation record
into register $t0.

For the next questions, consider the program code below (with line numbers):
assume $sp = 0xFFFF0020

0 li $s0,1

1 li $s1,2

2 jal _bart

3 j quit

4 _bart: addi $sp,$sp,-8

5 sw $s0,0($sp)

6 sw $ra,4($sp)

7 jal _homer

8 lw $ra,4($sp)

9 lw $s0,0($sp)

10 addi $sp,$sp,8

11 jr $ra

12 _homer: add $sp,$sp,-4

13 sw $s1,0($sp)

14 addi $s1,$0,10

15 move $v0,$s1

16 lw $s1,0($sp)

17 addi $sp,$sp,4

18 jr $ra

19 quit:

3. Give the value of $sp on each line from the code:

Line 5: $sp’s value is _________________________________

Line 8: $sp’s value is _________________________________

Line 13: $sp’s value is _________________________________

Line 19: $sp’s value is _________________________________

Name __

2 of 5

4. Assume memory is all 0s. Fill in the table below to show the memory contents (as words) after

the code above executes (i.e., when line 19 is reached):

5. Show the steps to multiply the 4-bit numbers 3 and 5 with the “fast shift-add multipler”. Use

the table below. List the multiplicand and product in binary. In the field “step”, write “ADD”
when the multiplicand is added. Write “SHIFT” to indicate when the product is shifted. In the
iteration “Start” write the initial values for the mutiplicand and product. You may not need all
steps (rows) in the table.

Address Value at this Address

0xFFFF0028

0xFFFF0024

0xFFFF0020

0xFFFF001C

0xFFFF0018

0xFFFF0014

0xFFFF0010

0xFFFF000C

Iter. Multiplicand (M) Product Step

Start

1

2

3

4

5

6

7

Name __

3 of 5

6. Show the steps to multiply an 6-bit number 17 and 3 with Booth’s algorithm. Use the table

below. List the multiplicand and product in binary. In the field “step”, write “ADD”, “SUB”, or
“NO OP” to indicate which operation is done on each iteration.

7. Explain how the “fast shift-add multiply” improves over the original “slow shift-add multiply”. Be

sure to indicate what hardware changes make the “fast version” faster than the “slow version”.

8. Suppose we want to do the computation S = A + B. A and B are positive 2’s complement 8-bit

binary numbers. Give a boolean expression that indicates whether there was an overflow when
these numbers are added. To represent a certain bit i in A, B or S, use Ai, Bi or Si. E.g., bit

position 3 in A is A3. Assume the bits are numbered 0 to 7 (right to left).

9. Give the negation in one’s complement binary representation (5 bits) for the decimal numbers:

5d Negation (in one’s complement binary) _____________________

10d Negation (in one’s complement binary) _____________________

-15d Negation (in one’s complement binary) _____________________

Iter. Multiplicand (M) Product Step

Start

1

2

3

4

5

6

7

Name __

4 of 5

10. Give the negation in two’s complement binary representation (5 bits) for the decimal numbers:

11d Negation (in two’s complement binary) _____________________

15d Negation (in two’s complement binary) _____________________

-13d Negation (in two’s complement binary) _____________________

11. Give Booth’s encoding for the 8-bit numbers:

-19d Booth’s encoding ___________________________________

27d Booth’s encoding ___________________________________

62d Booth’s encoding ___________________________________

12. Give two reasons to use Booth’s algorithm (encoding) to improve the multiplication hardware.

13. Floating point numbers represent a “richer” set of values than integer numbers. Nevertheless,

processors support integer numbers and programs frequently use them. What primary advan-
tage does integer numbers and operations offer over floating point numbers and operations?

integer operations are significantly faster, programs frequently use discrete values
thus, using integer for common operations/values offers a big performance benefit.

14. Using 1-bit adders, draw the circuit for a 4-bit ripple-carry addition unit.

15. Using 1-bit adders and 1-bit inverters (i.e., the not of a bit), draw a circuit for a 4-bit ripple-
carry subtract unit.

16. Consider the boolean equation: A’BC + ABC + A’B’C. Give the truth table representation for this
boolean equation.

17. Suppose you want to design a hardware circuit that has two inputs A and B, and one output O.
The output O has the value 1 when exactly one input (A/B) is a 1. Give the truth table for this
circuit design.

18. For question 15, what is the boolean equation for the truth table?

19. Here is a truth table. What is the boolean equation for O?

INPUTS OUTPUT
A B C O
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

Name __

5 of 5

1 1 0 0
1 1 1 0

20. Let’s consider a 4-bit adder. If each 1-bit adder takes 2ns to compute an output (1-bit result

and carry-out), how long does it take to compute the full 4-bit result?

21. Consider problem 17 again. This time, let’s compute the time for subtraction (A-B). Suppose

the 1-bit inverter (used to complement the B input of each 1-bit adder) takes 1ns. How long
does it take to compute an answer with this subtraction unit? (Be careful: Think about whether
the invert operations can be done simultaneously.)

22. Suppose you have a program P. This program executes 1000 regular instructions, 100 floating

point multiply instructions, and 5 floating point square root instructions. Assume a regular
instruction takes 10ns, a floating point multiply takes 100ns and and floating point square root
takes 1000ns. What is the total amount of time (in ns) that the program takes to execute (the
“execution time”)?

23. Consider the program in question 18. Let’s suppose we can improve the floating-point multiply

to take 80ns or we can improve the floating-point square root to take 800ns. We cannot do
both improvements. Compute the execution time with both improvements. Which improvement
would you do?

24. Now, consider the fastest improvement from 19 and the original situation from problem 18.

What is the speedup of the improvement versus the original case?

