
Efficient LTL Model Checking of Deep Reinforcement Learning Systems
using Policy Extraction

Peng Jin, Yang Wang, Min Zhang
Shanghai Key Laboratory for Trustworthy Computing, East China Normal University

Shanghai Trusted Industry Internet Software Collaborative Innovation Center
E-mail: 51194501007@stu.ecnu.edu.cn, {ywang,zhangmin}@sei.ecnu.edu.cn

Abstract

Deep Reinforcement Learning (DRL) is a promising
technology for solving intractable control tasks. Its applica-
tions in safety-critical fields require high-reliability guaran-
tees. However, formal verification of DRL systems is chal-
lenging because deep neural networks (DNNs) embedded in
the applications are uninterpretable. In this paper, we pro-
pose a novel approach to linear temporal logic (LTL) model
checking of DRL systems by extracting interpretable poli-
cies from DNNs. The extracted policy can retain compara-
ble performance to the original DNN. More importantly, its
decision domain is finite and thus directly verifiable against
LTL properties using existing model checking techniques.
Experimental results on four classic control systems demon-
strate the effectiveness of our approach.

1. Introduction
Deep Reinforcement Learning is being utilized heavily

to solve diverse problems due to its strength in develop-
ing complex control systems [13, 19]. However, new risks
emerge with this trend. The reliability of such systems is
hard to guarantee because they cannot be formally verified
like conventional systems. It becomes one of the significant
obstacles to applying DRL in the real world [16, 17].

Three features make it a challenging problem to veri-
fying DRL systems. First, the state space of such control
systems is usually infinite and continuous, but most of the
model checking-based approaches can only handle finite-
state models [20]. Second, the system dynamics are gen-
erally nonlinear, which increases the complexity of formal
verification [4]. Lastly, DNNs embedded in the systems are
inexplicable, restricting the scalability of verification meth-
ods [9, 11]. Among them, the black-box nature of DNNs
is the crux in defining faithful formal models for DRL sys-
tems, which are prerequisites for subsequent verification.

In this paper, we propose a simple but effective method

DOI reference number: 10.18293/SEKE2022-029

to model checking LTL properties of DRL systems, which
bypasses the crux by extracting interpretable policies from
DNNs trained with popular DRL algorithms. Then systems
driven by the extracted policies can be formally verified us-
ing existing model checking techniques. The policy can
fulfill two essential requirements. One is that it can offer
competitive performance compared to the original DNN.
Besides, its decision domain is finite, where the decision-
making unit (DMU) is a set of adjacent concrete states. For
simplicity, we use DMU to represent the concrete states that
it contains. We first discretize the state space of systems into
finite DMUs and then determine the action adopted by each
DMU to generate the final policy.

Based on extracted policies, we devise an algorithm to
transform the DRL system into a finite-state transition sys-
tem that can be model-checked via off-the-shelf tools such
as Spot [7] against complex temporal properties. We ap-
ply our approach to verify four canonical control systems
formally. Experimental results indicate that control systems
driven by the extracted policies can be formally modeled
and efficiently verified against complex temporal properties.

In summary, this paper makes three major contributions:
1. A novel method for extracting interpretable policies

from trained DNNs.
2. An efficient model checking approach for verifying

control systems driven by the extracted policies.
3. Four case studies for model checking the temporal

properties of four control systems.
Paper organization. Section 2 introduces our policy extrac-
tion method. We present a model checking approach for
control systems based on the extracted policies in Section
3. Section 4 shows the experimental results. Section 5 dis-
cusses related works, and Section 6 concludes the paper.

2. Interpretable Policy Extraction
In this section, we explain the notion of decision-making

units (DMUs) used for policy extraction and present a state-
space discretization method for generating DMUs and a
process of determining corresponding actions for DMUs.

2.1. Decision-Making Unit

In DRL, policies encoded by DNNs map each concrete
state to an optimal action. Therefore, the decision-making
unit of such policies is infinite, making it difficult to build
formal models for verification. Motivated by the works [2],
we use finite axial bounding boxes to define the DMUs of
our policy. All DMUs have the same area, and their union
forms the state space. More importantly, they do not in-
tersect, which indicates an assumption that concrete states
within the DMU adopt the same action.

The assumption above to DMU is reasonable. Firstly,
trained DNNs should take the same action for two inputs
whose norm distance is close, which reflects the decision
robustness [10, 22]. Besides, DRL handles the control sys-
tems that require continuous decision-making. Even if the
chosen action is not optimal for all concrete states in the
DMU, subsequent actions can compensate for the overall
policy performance.

2.2. Generation of DMUs

We consider an n-dimensional state space S of the con-
trol system. Let Li and Ui be the lower and upper bounds
of the i-th dimension range of S , respectively. We intro-
duce the discretization vector D ∈ Rn to divide S into
DMUs, where D = [d1, . . . , dn]. For the i-th dimension
range, it will be discretized into mi (= bUi−Li+di

di
c) inter-

vals, i.e. [Li, Li + di), . . . , [Li + midi − di, Li + midi). Let
Ri = {Li, . . . , Li + midi − di} be the set of lower bounds of
divided intervals in the i-th dimension. Then any DMU
can be defined by a pair of two n-dimensional vectors
< [l1, . . . , ln], [d1, . . . , dn] >, and its corresponding range is
[l1, l1 + d1) × . . . × [ln, ln + dn), where li ∈ Ri.

2.3. Action Determination

The action determination process is based on the DNNs
trained by traditional DRL algorithms. The concrete state
originally adopts the action output by the trained DNN. We
aim to select the most frequently adopted action by con-
crete states in the DMU as its optimal action. However,
there are infinite concrete states in the DMU, so it is infea-
sible to calculate precisely the action taken by most con-
crete states. Motivated by randomized smoothing [6] that
uses Monte Carlo algorithms to evaluate the class that the
trained DNN is most likely to classify for the images close
to the input, we sample t concrete states in the DMU and
determine its action based on the actions adopted by these
concrete states. The sampled concrete state s is generated
from n independent uniform distributions, where si is sam-
pled from U[li, li + di).

Let Acta be the most frequently adopted action among t
actions. If Acta appears much more often than other actions,
it will be the optimal action for the corresponding DMU.
Otherwise, we repeat the sampling process until an explicit

Algorithm 1 Sampling-Based Action Determination
Input parameters: DMU s, action space AS .
Constant parameters: discretization vector D, sampling
count t and statistical significance α.

function determineAction(s, AS)
S tates← sample t concrete states from s
Actions← input S tates to the trained DNN
if Type(AS) is continuous then

return Average(Actions)
Acta, Actb ← top two indices in Actions
Cnta, Cntb ← Actions[Acta], Actions[Actb]
if BinomPValue(Cnta,Cnta + Cntb, 0.5) ≤ α then

return Acta
else

return determineAction(s, AS)

optimal action is obtained to avoid achieving a suboptimal
action. When the action space of systems is continuous, we
directly calculate the average of t actions as the final action
of the DMU. In such a case, the action is represented by a
vector of real numbers. The action vectors output by the
trained DNN are hardly equal, so the actions adopted by
sampled concrete states are always different.

Algorithm 1 depicts the whole of determining actions,
where s denotes a DMU. We first sample t concrete states
in the DMU and input them to the trained DNN to obtain
actions that will be stored in the Actions array. For contin-
uous action spaces, we directly take the average of actions.
Otherwise, we choose the first two actions with the high-
est occurrences. Following the practice in [6], the Binom-
PValue function returns the p-value of the hypothesis test,
where Cnta ∼ Binomial(Cnta + Cntb, 0.5). If the p-value is
less than or equal to the statistical significance α, Acta is the
action for the corresponding DMU. Namely, if Cnta is much
higher than Cntb, Acta will be returned. Otherwise, we will
repeat the action determination process.

2.4. Hyperparameter Setting

Algorithm 1 requires three hyperparameters: sampling
count t, statistical significance α, and discretization vector
D. Usually, we set t to 5, which experimentally shows a
good balance between sampling time cost and final policy
performance. Besides, α is used to calibrate the resampling
threshold. Its setting value is related to t. We set it to 0.2 so
that only when Acta appears 5 or 4 times can it be regarded
as the action of the DMU. The vector D determines the
granularity of generated DMUs. We can adjust it accord-
ing to the performance of the extracted policy. For instance,
if the extracted policy performs worse than the benchmark
DNN, we can decrease it to generate preciser DMUs. Other-
wise, we can increase it appropriately to reduce the number
of DMUs, which can reduce the verification time to some
extent.

3. Model Checking with Extracted Policies
The DMUs of extracted policies are finite and their union

covers the entire state space. They can be treated as states of
the transition system. Therefore, the system driven by the
extracted policy can first be transformed into a DMU-based
transition system (TS). Then existing model checking tech-
niques can be leveraged to verify its LTL properties [3].

Accordingly, we introduce the abstract and refinement
techniques to solve the problems encountered in construct-
ing transition systems. Then we combine these two oper-
ations into an algorithm to construct TS automatically. At
last, we discuss the process of LTL model checking based
on the constructed TS .

3.1. Abstraction and Refinement

3.1.1 Abstraction in Building Transition Relations

Since the concrete states contained in the DMU adopt the
same action, as demonstrated in Figure 1, we can treat them
as a whole to carry out a state transition based on system
dynamics. However, the generated area (pink part) may
be irregular due to the nonlinearity of system dynamics, so
it is hard to formally represent the reachable area, which
brings difficulties to the construction of transition relations
between DMUs.

Therefore, our goal is to abstract the generated region
into the form we can represent. We properly expand the
irregular area to fit multiple DMUs exactly. Formally, let
mini and maxi represent the minimum and maximum of the
irregular area on the i-th dimension, respectively. We use
[l1, u1) × . . . × [ln, un) to define the corresponding expanded
area. Then for each dimension, we can uniquely determine
li and ui based on the following constraints, where Ri is
mentioned in Section 2.2:

li ≤ mini, mini < li + di, li ∈ Ri

maxi < ui, ui − di ≤ maxi, di|(ui − li).

Let counti = (ui − li)/di. Obviously, the expanded area con-
tains Πn

i=1counti DMUs. In Figure 1, four successor DMUs
intersect the irregular area. As for the subsequent transi-
tion, we can decompose it into the transition of each DMU
that constitutes the expanded area, thus forming an iterative
construction procedure.

3.1.2 Property-Based Refinement of DMUs

The LTL property consists of atomic propositions. There-
fore, it is necessary to determine the atomic propositions
each state satisfies in the transition system. Otherwise, LTL
properties cannot be verified. However, treating DMUs as
states in the transition system may lead to ambiguity since
concrete states in the same DMU cannot be guaranteed to
all satisfy certain atomic proposition. For example, for the
atomic proposition b in Figure 2, partial concrete states in
the DMU satisfy b, and the others satisfy ¬b, which will

li

mini maxi

ui

Transition
Decomposition

Extracted
Policy

Action
DMU

Figure 1: Computing direct successors of the DMU in a 2-
dimensional control system.

{a, b} {a,¬b}RefineAPd : {a}
APn : {b}

successor

DMU

predecessor

Figure 2: Property-based refinement of the DMU, where the
red bounding box represents a nondeterministic DMU.

affect the verification of LTL properties like F[b]. We call
such DMUs and corresponding atomic propositions nonde-
terministic.

We refine the nondeterministic DMUs in the transition
system constructed in Section 3.1.1 to eliminate ambigu-
ity. In practice, we replace the nondeterministic DMU with
multiple DMUs. Except for satisfying atomic propositions,
the other properties of these substitute DMUs are the same
as the original one, including the area, direct predecessors,
and direct successors.

Formally, let APd define the set of propositions satisfied
by the original DMU and APn = {ϕ1, . . . , ϕm} represent the
set of nondeterministic propositions. In Figure 2, APd and
APn are {a} and {b}, respectively. Then we define the set
APsub = {ϕ1,¬ϕ1}× . . .×{ϕm,¬ϕm}. Accordingly, there will
be 2m substitute DMUs. The i-th one satisfies the atomic
propositions APd∪api, where api ∈ APsub. If APn is empty,
there will be only one substitute DMU that is exactly the
original one.

3.2. Construction of Transition Systems

We combine the above two operations into an algorithm
to construct the transition system, where the primary work-
flow is described in Algorithm 2.

We use s0 to denote the initial DMU and assume it is
deterministic. For each DMU s fetched from Queue, we
first determine its action based on Algorithm 1. Then we
sequentially calculate the extreme values in each dimension
of the irregular area generated by the state transition, i.e.,
mini and maxi in Line 7. The set {s1, . . . , sm} represents the

Algorithm 2 Abstraction-Based TS Construction
Input: initial DMU s0, action space AS , state transition
function f .
Output: transition system TS .

1: Queue← {s0}

2: TS .setInitialState(s0)
3: while Queue , ∅ do
4: Fetch s from Queue
5: action← determineAction(s, AS)
6: for i = 1, . . . , n do
7: [mini,maxi]← calExtremum(f , s, action, i)
8: {s1, . . . , sm} ← abstract([min1,max1] × . . . ×

[minn,maxn])
9: for i = 1, . . . ,m do

10: {si
1, . . . , s

i
k} ← refine(s

i)
11: for j = 1, . . . , k do
12: TS .addEdge(s→ si

j)
13: if si has not been traversed then
14: Push si

j into Queue

15: return TS

DMUs that constitute the expanded area. For each DMU
si that is transitioned from s, we replace it with multiple
deterministic states and add the edge from s to the substitute
DMUs into the transition system. Finally, if DMU si has not
been traversed, we will push all its substitute DMUs into
Queue to be visited, thus ensuring that they have the same
direct successors.

3.3. LTL Model Checking

The verification algorithm for LTL properties first con-
structs the product of the automata that is equivalent to the
negative form of the property and TS , then checks whether
there exists a path that can be accepted [3]. Namely, TS is
proved to satisfy the property if no violated path is found.

Since we preserve all original paths of the system and
solve problems by adding the reachable range, we can en-
sure the soundness of verification results. Soundness means
that the LTL properties verified on the constructed TS are
also true in the original control system.

Therefore, all that remains is to leverage existing model
checking tools after expressing the constructed TS in the
specified rules. We utilize Spot [7] to complete the subse-
quent verification work in practice.

4 Experiments and Evaluation
We intend to demonstrate three aspects of our approach

through experiments: (i) performance comparison with the
benchmark DNN, (ii) LTL verification results of four sys-
tems after TS construction, and (iii) method effectiveness
compared to relevant works.

All experiments are performed on a workstation running

Ubuntu 18.04 with a 32-core AMD CPU. We select two
control systems from Gym [5], plus Tora [12] and 4-Car
Platoon [23], as test systems. We introduce them below:

Mountain Car (MC) A car is positioned on a one-
dimensional track between two hills. It is expected to drive
up the right mountain where the position is 0.5.

Pendulum (PD) A pole can rotate around a fixed end-
point, where it is expected to swing up and remain upright.

Tora A cart fixed on the wall with springs can move
freely on a frictionless surface. The arm on the cart can
rotate freely around an axis. The controller is expected to
stabilize the system to an equilibrium state.

4-Car Platoon (4CP) Four cars are supposed to drive
in a platoon behind each other. An intuitive requirement is
that the four cars cannot collide.

4.1 Performance Comparison

We utilize a framework [21] to train benchmark neural
networks. Note that the action space is discrete in MC and
continuous in other systems, so we use DQN [15] to train
DNNs in MC and DDPG [18] to train DNNs in the others.
We use the default settings in the framework for all other
training hyperparameters, such as learning rate. Besides,
the discretization vector D set for policy extraction in each
system is listed in Table 1 (Column: Initial DMU).

We compare the performance of extracted policies and
original DNNs via the episode reward value. We test 500
episodes for both policies. As shown in Figure 3, we use
boxplots to depict the distribution of test results, where the
black dots are outliers.

We can see that the metrics describing the distribution of
episodic rewards, such as minimum and median, are close.
Significantly, the performance of extracted policies in MC
and Tora is marginally better than the DNNs. Therefore, we
can conclude that the policy extraction method is reasonable
and practical for these control systems.

4.2. LTL Verification Analysis

The LTL verification results of four systems driven by
extracted policies are listed in Table 1.

MC We set constraints for MC. Let p(s) and v(s) be
the position and velocity of the car at state s, respectively.
Property G[p(s) = 0.2 → v(s) > 0.01] states that the car’s
speed must be greater than 0.01 at position 0.2. The other
property is that the car’s position will eventually be greater
than 0.5, formulated by F[p(s) > 0.5].

Both properties can be verified under the initial state
space [−0.5,−0.4999)× [0, 10−4). Since the TS is the same
in both test cases, the verification times are also close.

PD We also set two LTL properties for PD. Firstly, we
set G[|θ(s)| < π

2], where θ(s) and ω(s) denote the angle
and angular velocity of the pole, respectively. The formula
describes that the pole’s angle must always be in (− π2 ,

π
2).

Besides, we expect that the angular velocity will eventually

Figure 3: Performance comparison between the extracted policies and the DNNs (horizontal axis: the episode reward).

Table 1: LTL verification results of four systems driven by extracted policies.

Case Initial DMU LTL Property Number All Verified Time(s)

MC < [−0.5, 0.0], [10−4, 10−4] >
G[p(s) = 0.2→ v(s) > 0.01] 1.2 × 106 X X 2687

F[p(s) > 0.5] 1.2 × 106 X X 2691

PD < [0, 0], [10−2, 10−2] >
G[|θ(s)| < π

2] 728 X X 5
G[θ(s) < 0→ F[ω(s) > 0]] 728 X % 6

Tora
< [0, 0, 0, 0], G[|s1 | < 2 ∧ |s2 | < 2

1.0 × 106 % X 2731
[10−2, 10−2, 10−2, 10−2] > ∧|s3 | < 2 ∧ |s4 | < 2]

4CP
< [0, 0, 0, 0, 0, 0, 0], G[d1(s) > 0∧

9721 X X 154
[10−2, 10−2, 10−2, 10−2, 10−2, 10−2, 10−2] > d2(s) > 0 ∧ d3(s) > 0]

Remark: the Number of DMUs in TS ; whether TS contains All reachable DMUs; whether the property is Verified, and the verification Time.

Figure 4: Traversal of DMUs over time steps in MC.

be greater than 0 if the angle is less than 0, i.e., G[θ(s) <
0→ F[ω(s) > 0]].

The second property fails to be verified because abstract
methods applied in building transition relations add paths
that violate the constraint.

Tora The equilibrium state for Tora is [0, 0, 0, 0], so we
expect the system can stay within (−2, 2)4, which can be
represented by G[|s1| < 2 ∧ |s2| < 2 ∧ |s3| < 2 ∧ |s4| < 2].

We limit the number of traversed DMUs to 106 to control
the verification time. Therefore, the expected property can
only be guaranteed within 24 time steps.

4CP We use di(s) to denote the distance between the i-
th car and (i + 1)-th car, the constraint can be formulated as
G[d1(s) > 0 ∧ d2(s) > 0 ∧ d3(s) > 0].

Although 4CP is a 7-dimensional system, reachable
DMUs are limited. The property can be verified among
around 104 DMUs.

Evaluation Since the time required to build the transi-
tion system is much more than the execution time of Spot,
the verification time is proportional to the number of tra-

Figure 5: Traversal of DMUs over time steps in PD.

Table 2: Performance comparison with ReachNN∗.

Case Neural Network Ours ReachNN∗

B1
Tanh(2 × 20) 389 Unknown
Tanh(2 × 100) 401 Unknown

B2
Sigmoid(2 × 20) 91 22
Sigmoid(2 × 100) 96 105

MC
Sigmoid(2 × 16) 2567 Unknown
Sigmoid(2 × 200) 2574 Unknown

versed DMUs. However, compared with the state space,
reachable DMUs are limited. For example, taking the center
concrete state in the DMU, we depict the traversal of DMUs
over time steps in MC and PD in Figure 4 and Figure 5,
respectively, where different colors indicate that DMUs are
traversed at different time steps. It can be seen that both sys-
tems operate in a fraction of the state space, which can make
our method immune to the state explosion problem. There-
fore, the combination of policy extraction and TS construc-
tion can ensure efficient verification of systems with limited
reachable ranges.

4.3 Method Comparison

To our best knowledge, few related methods can verify
properties other than safety and liveness, such as LTL in
this paper. Therefore, we only compare the verification of
liveness properties with ReachNN∗ [9].

For simplicity, we follow most of the experimental set-
tings in [11], including test systems and verification prop-
erties. Therefore, we only list the necessary parameters in
Table 2. There are two types of verification results: veri-
fication passes (verification time) or fails (Unknown). The
discretization vector values in B1 and B2 are [10−3, 10−3]
and [10−3, 10−4], respectively.

Our method outperforms ReachNN∗ in most cases. More
importantly, the scalability of reachability analysis methods
on which ReachNN∗ is based is limited by the structure and
scale of DNNs. However, the trained DNN is a black box
to our method via policy extraction, so the verification time
is independent of DNNs.

5 Related Work
There is a growing literature on formal verification of

DRL systems. Reachability analysis methods can calculate
reachable sets of systems at each time step. For instance,
Fan et al. approximated the DNN controller with Bern-
stein polynomials [9] while Ivanov et al. proposed a Taylor-
model-based reachability algorithm to improve the scalabil-
ity [11]. Besides, shielding can prevent DRL systems from
exhibiting unsafe behavior [1, 23]. However, these methods
can only verify the safety and liveness properties of DRL
systems, while our approach can verify more complex tem-
poral properties to guarantee applicability.

Works made by [8, 14] aim to model checking the DRL-
driven systems via techniques on formal verification of
DNNs. However, the scalability of their methods is limited
by the size of neural networks, so the length of counterex-
amples obtained in experiments is limited. In contrast, the
scalability of our method is DNN-independent.

6 Conclusion and Future Work
We proposed an LTL model checking approach to DRL

verification. Our approach relies on extracting interpretable
policies from trained DNNs and modeling DRL systems as
a finite-state transition system using the extracted policies.
It supports model checking of more complex temporal prop-
erties of DRL systems except for safety properties. We ap-
plied it to the DRL systems trained for four classic control
problems. The experimental results show the effectiveness
of our approach.

Our approach demonstrated the feasibility of extracting
interpretable policies to substitute for inexplicable neural
networks for formal verification. We plan to apply our ap-
proach to more complex DRL systems and devise more ef-
ficient model checking algorithms to improve scalability.

Acknowledgement
This work is supported by National Key Research Pro-

gram (2020AAA0107800), Shanghai Science and Technol-
ogy Commission (20DZ1100300), Shanghai Artificial In-
telligence Innovation and Development Fund (2020-RGZN-
02026), Shenzhen Institute of Artificial Intelligence and
Robotics for Society (AC01202005020), NSFC projects
(61872146, 62161146001). Yang Wang and Min Zhang are
the corresponding authors.

References
[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, et al. Safe

reinforcement learning via shielding. In AAAI, 2018.
[2] Edoardo Bacci and David Parker. Probabilistic guarantees for safe

deep reinforcement learning. In FORMATS, pages 231–248, 2020.
[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking.

MIT press, 2008.
[4] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable

reinforcement learning via policy extraction. NIPS, 31, 2018.
[5] Greg Brockman et al. OpenAI Gym, 2016.
[6] Jeremy Cohen et al. Certified adversarial robustness via randomized

smoothing. In ICML, pages 1310–1320, 2019.
[7] Duret-Lutz et al. Spot 2.0—a framework for ltl and ω-automata ma-

nipulation. In ATVA. Springer, 2016.
[8] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Ver-

ifying learning-augmented systems. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pages 305–318, 2021.

[9] Jiameng Fan et al. Reachnn*: A tool for reachability analysis of
neural-network controlled systems. In ATVA, pages 537–542, 2020.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[11] Radoslav Ivanov et al. Verisig 2.0: Verification of neural network
controllers using taylor model preconditioning. In International Con-
ference on Computer Aided Verification, 2021.

[12] Mrdjan Jankovic, Daniel Fontaine, and Petar V KokotoviC. Tora
example: cascade-and passivity-based control designs. IEEE Trans-
actions on Control Systems Technology, 4(3), 1996.

[13] Nathan Jay et al. Internet congestion control via deep reinforcement
learning. CoRR, abs/1810.03259, 2018.

[14] Yafim Kazak, Clark Barrett, Guy Katz, and Michael Schapira. Veri-
fying deep-rl-driven systems. In Proceedings of the 2019 Workshop
on Network Meets AI & ML, pages 83–89, 2019.

[15] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, et al. Con-
tinuous control with deep reinforcement learning. In ICLR’16, 2016.

[16] Yen-Chen Lin et al. Tactics of adversarial attack on deep reinforce-
ment learning agents. arXiv preprint arXiv:1703.06748, 2017.

[17] Björn Lütjens, Michael Everett, and Jonathan P How. Certified ad-
versarial robustness for deep reinforcement learning. In Conference
on Robot Learning, 2019.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[20] Pierre El Mqirmi, Francesco Belardinelli, and Borja G León. An
abstraction-based method to check multi-agent deep reinforcement-
learning behaviors. arXiv preprint arXiv:2102.01434, 2021.

[21] Kei Ota. TF2RL. https://github.com/keiohta/tf2rl/, 2020.
[22] Christian Szegedy et al. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199, 2013.
[23] He Zhu et al. An inductive synthesis framework for verifiable rein-

forcement learning. In PLDI, pages 686–701, 2019.

