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ABSTRACT
To support the retrieval and fusion of multimedia information from multiple sources and databases,
a spatial/temporal query language called ΣQL is proposed. ΣQL is based upon the σ−operator
sequence and in practice expressible in SQL-like syntax. ΣQL allows a user to specify powerful
spatial/temporal queries for both multimedia data sources and multimedia databases, eliminating the
need to write different queries for each. A ΣQL query can be processed in the most effective
manner by first selecting the suitable transformations of multimedia data to derive the multimedia
static schema, and then processing the query with respect to this multimedia static schema. In this
paper we illustrate this approach by data fusion examples, investigate multimedia data
transformations and provide query processing algorithms.

1. INTRODUCTION

With the rapid expansion of the wired and wireless networks, a large number of soft real-time, hard
real-time and non-real-time sources of information need to be processed, checked for consistency,
structured and distributed to the various agencies and people involved in an application [16]. In
addition to spatial/temporal multimedia databases, it is also anticipated that numerous web sites on
the World Wide Web will become rich sources of spatial/temporal multimedia information. The
retrieval and fusion of spatial/temporal multimedia information from diversified sources calls for
the design of spatial/temporal query languages capable of dealing with both multiple data sources
and databases in a heterogeneous information system environment.

Powerful query languages for multiple data sources and databases are needed in applications such
as emergency management (fire, flood, earthquake, etc.), tele-medicine, digital library, community
network (crime prevention, child care, senior citizens care, etc.), military reconnaissance and
scientific exploration (field computing). These applications share the common characteristics that
information from multiple sources and databases must be integrated. A typical scenario for
information fusion in emergency management may involve live report from a human observer, data
collected by a heat sensor, video signal from a camera mounted on a helicopter, etc. Current
systems often have preprogrammed, fixed scenarios. In order to enable the end user to effectively
retrieve spatial/temporal multimedia information and to discover relevant associations among media
objects, a flexible spatial/temporal multimedia query language for multiple data sources and
databases should be provided.
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Data sources such as camera, sensors or signal generators usually provide continuous streams of
data. Such data need to be transformed into abstracted information, i.e., into various forms of
spatial/temporal/logical data structures, so that the processing, consistency analysis and fusion of
data become possible. The abstracted information does not necessarily represent different levels of
knowledge and can be various representations of common knowledge and therefore needs to be
integrated and transformed into fused knowledge that is the common knowledge derivable from,
and consistent with, the various abstractions.

As an example, information items such as time and number of people can be extracted from
multiple data sources such as image, scenario document and sound [21]. Cooperation among
various media is carried out by exchanging these information items. In an experimental study
involving a TV drama scene, this approach could successfully realize good synchronization
between image, scenario and sound, and moreover could also perform personal character
identification [21]. As a second example, a recent study first identified known person's names from
the text, and then tried to detect corresponding faces from the video stream [17]. As a third
example, a video camera is a data source that generates video data. Such video data can be
transformed into various forms of abstracted representations including: text, keyword, assertions,
time sequences of frames, qualitative spatial description of shapes, frame strings, and projection
strings [5]. To describe a frame containing two objects a and b, the text is a is to the northwest of b,
the keywords are {a, b}, and the assertion is (a northwest b). The x-directional projection string is
(u: a < b). The time sequence of three frames Ct1 , Ct2 , Ct3 , is (t: Ct1 < Ct2 < Ct3). Some of these
transformations will be explained later.

To support the retrieval and fusion of multimedia information from multiple sources and databases,
a spatial/temporal query language called ΣQL is proposed. ΣQL is based upon the σ−operator
sequence and in practice expressible in an SQL-like syntax. The natural extension of SQL to ΣQL
allows a user to specify powerful spatial/temporal queries for both multimedia data sources and
multimedia databases, eliminating the need to write different queries for each. A ΣQL query can be
processed in the most effective manner by first selecting the suitable transformations of multimedia
data to derive the multimedia static schema, and then processing the query with respect to this
multimedia static schema.

Query language for heterogeneous multimedia databases is a new research area and therefore the
body of related work only just begins to grow. There has been substantial research on query
languages for images and spatial objects, and a survey can be found in [8, 9]. Of these query
languages, many are based upon extension of SQL, such as PSQL [19] and Spatial SQL [11]. Next
come video query languages where the focus is shifted to temporal constraints [1] and content based
retrieval [4]. Recent efforts begin to address query languages involving images, video, audio and
text. Vazirgiannis describes a multimedia database system for multimedia objects that may originate
from sources such as text, image, video,  [22]. The query language QL/G developed by Chan and
Zhu supports the querying of geometric data bases and is applicable to both geometric and text data
[3], but does not handle temporal constraints. In [18], Oomoto and Tanaka describes an SQL-like
query language for video databases, where the emphasis is more on presentation, rather than on
retrieval. A multimedia object query language MOQL that extends the object query language OQL
is reported in [17]. An interoperable multi-database platform in a client/server environment using a
common object model is described in [24], which can provide inter-operations between popular
database systems. A related approach is to provide a database integrator (DBI) for customers who
have data stored in multiple data sources, typically heterogeneous and/or non-relational, and want to
view those data sources as a single logical database from the data and/or metadata perspective [12].
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While the above described approaches each address some important issues, there is a lack of unified
treatment of queries that can deal with both spatial and temporal constraints from both live data
sources and stored databases. Since the underlying databases are complex, the user also needs to
write complicated queries to integrate multimedia information. The proposed approach differs from
the above in the introduction of a general powerful operator called the σ−operator, so that the
corresponding query language can be based upon σ−operator sequences.  The paper is organized as
follows.  The basic concepts of the σ−query is explained in Section 2.  Section 3  introduces
elements of Symbolic Projection Theory and the general  σ−operator, and Secction 4 describes the
SQL query language.  An illustration of data fusion using the σ−query is presented in Section 5.
Section 6 formalizes the representation for multimedia sources and then gives query processing
examples.  The techniques  for query processing are explained in Section 7.   Transformational
analysis is described in Section 8.  In Section 9 we discuss further research  topics.

2. BASIC CONCEPTS OF THE σσ−−QUERY

As mentioned in Section 1, the σ−query language is a spatial/temporal query language for
information retrieval from multiple sources and databases. Its strength is its simplicity: the query
language is based upon a single operator - the σ−operator. Yet the concept is natural and can easily
be mapped into an SQL-like query language. The σ−query language is useful in theoretical
investigation, while the SQL-like query language is easy to implement and is a step towards a user-
friendly visual query language. An example is illustrated in Figure 1. The source R, also called a
universe, consists of time slices of 2D frames. To extract three pre-determined time slices from the
source R, the query in mathematical notation is: σt (t1 , t2 , t3 ) R.

Figure 1. Example of extracting three time slices (frames) from a video source.

The meaning of the σ−operator in the above query is select, i.e. we want to select the time axis and
three slices along this axis. The subscript t in σt indicates the selection of the time axis. In the SQL-
like language a ΣQL query is expressed as:

SELECT t
CLUSTER t1, t2, t3

FROM R
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A new keyword "CLUSTER" is introduced, so that the parameters for the σ−operator can be listed,
such as t1, t2, t3. The word "CLUSTER" indicates that objects belonging to the same cluster must
share some common characteristics (such as having the same time parameter value). A cluster may
have a sub-structure specified in another (recursive) query. Clustering is a natural concept when
dealing with spatial/temporal objects. The mechanism for clustering will be discussed further in
Section 3. The result of a ΣQL query is a string that describes the relationships among the clusters.
This string is called a cluster-string, which will also be discussed further in Section 3.

A cluster is a collection of objects sharing some common characteristics. The SELECT- CLUSTER
pair of keywords in ΣQL is a natural extension of the SELECT keyword in SQL. In fact, in SQL
implicitly each attribute is considered as a different axis.  The selection of the attributes’ axes
defines the default clusters as those sharing common attribute values. As an example, the following
ΣQL query is equivalent to an SQL query to select attributes’ axes "sname" and "status" from the
suppliers in Paris.

SELECT sname, status
CLUSTER *
FROM supplier
WHERE city = "Paris"

In the above ΣQL query, the * indicates any possible values for the dimensions sname and status.
Since no clustering mechanism is indicated after the CLUSTER keyword the default clustering is
assumed. Thus by adding the "CLUSTER *" clause, every SQL query can be expressed as a ΣQL
query.

Each cluster can be open (with objects inside visible) or closed (with objects inside not visible). The
notation is t2

o for an open cluster and t2
c or simply no superscript for a closed cluster. In the ΣQL

language the keyword "OPEN" is used:

SELECT t
CLUSTER t1 , OPEN t2 , t3

FROM R

With the notation described above, it is quite easy to express a complex, recursive query. For
example, to find the spatial relationship of two objects 'a' and 'b' from the three time slices of a
source R, as illustrated in Figure 1, the ΣQL query in mathematical notation is:

σx (x1 , x2)( σt (t1
o, t2

o, t3
o ) R)

In the ΣQL language the query can be expressed as:

SELECT x
CLUSTER x1, x2

FROM
SELECT t
CLUSTER OPEN t1, OPEN t2 , OPEN t3

FROM R

The query result is a cluster-string describing the spatial/temporal relationship between the objects
'a' and 'b'. How to express this spatial/temporal relationship depends upon the (spatial) data structure
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used. In the next section we explain Symbolic Projection as a means to express spatial/temporal
relationships.

3. A GENERAL σσ−−OPERATOR FOR σσ−−QUERIES

As mentioned above, the ΣQL query language is based upon a single operator - the σ−operator -
which utilizes Symbolic Projection to express the spatial/temporal relationships in query
processing. In the following, Symbolic Projection, the cutting mechanism and the general
σ−operator are explained, which together constitute the theoretical underpinnings of ΣQL.

Symbolic Projection [10, 15] is a formalism where space is represented as a set of strings. Each
string is a formal description of space or time, including all existing objects and their relative
positions viewed along the corresponding coordinate axis of the string. This representation is
qualitative because it mainly describes sequences of projected objects and their relative positions.
We can use Symbolic Projection as a means for expressing the spatial/temporal relationships
extracted by a spatial/temporal query.

Continuing the example illustrated by Figure 1, for time slice Ct1 its x-projection using the
Fundamental Symbolic Projection is:

σx (x1 , x2 ) Ct1 = (u: Cx1,t1 < Cx2,t1)

and its y-projection is:

σy(y1 , y2 ) Ct1 = (v: Cy1,t1 < Cy2,t1)

In the above example, a time slice is represented by a cluster Ct1 containing objects with the same
time attribute value t1.  A cluster-string is a string composed from cluster identifiers and relational
operators.  The single cluster Ct1 is considered a degenerated cluster-string. After the σy operator is
applied, the resulting cluster Cy1,t1 contains objects with the same time and space attribute values.
In the above example, the cluster-string (v: Cy1,t1 < Cy2,t1) has the optional parentheses and
projection variable Òv:Ó to emphasize the direction of projection.

The query σt(t1 , t2 , t3 ) R yields the following cluster-string α:

α = (t: Ct1 < Ct2 < Ct3 )

When another operator is applied, it is applied to the clusters in a cluster-string.  Thus the query
σx (x1, x2) σt(t1

o, t2
o, t3

o)R yields the following cluster-string β:

β = (t: (u: Cx1,t1 < Cx2,t1) < (u: Cx1,t2 < Cx2,t2) < (u: Cx1,t3 < Cx2,t3))

The above cluster-string β needs to be transformed so that the relationships among the objects
become directly visible.  This calls for the use of a materialization function MAT to map clusters to
objects.   Since Cx1,t1 = Cx1,t2 = Cx1,t3 = {a} and Cx2,t1 = Cx2,t2 = Cx2,t3 = {b},  the materialization
MAT(β) of the above cluster-string yields:

MAT(β) = (t: (u: a < b) < (u: a < b) < (u: a < b))
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Returning now to the ΣQL query that is equivalent to an SQL query to select attributes (i.e., axes)
"sname" and "status" from the suppliers in Paris.

SELECT sname, status
CLUSTER *
FROM supplier
WHERE city = "Paris"

The result of the above query is a cluster-string α that describes the relationships among the
clusters. Since each cluster corresponds to a unique (sname, status) pair, the query result α is:

 α = Csname1,status1 > Csname2,status2 > … > Csname-n,status-n

where > denotes an ordering relation.  When this cluster string α is materialized into objects using a
materialization function MATR, the result MATR(α) is an ordered list of (sname, status) pairs from
suppliers in Paris.

The query result in general depends upon the clustering that in turn depends upon the cutting
mechanism. The cutting is an important part of Symbolic Projection because a cutting determines
both how to project and also the relationships among the objects or partial objects in either side of
the cutting line.  In most of the examples presented in this paper, the cuttings are ordered lists that
are made in accordance with the Fundamental Symbolic Projection.  The cutting type, κ-type,
determines which particular cutting mechanism should be applied in processing a particular
σ−query.

The general σ−operator is defined by the following expression where, in order to make different
cutting mechanisms available, the cutting mechanism κ−type is explicitly included:

σaxes, k-type  
σ-type (clusters)ϕ <cluster-string> = stype : <cluster-string >

The general σ−operator is of the type σ−type and selects an axis or multiple axes, followed by a
cutting mechanism of the type κ−type on (clusters)ϕ where ϕ is a predicate that objects in the
clusters must satisfy.  The σ−operator operates on a cluster-string that either describes a data source
(e.g. data from a specified sensor) or is the result of another σ−operator.  The result of the
σ−operator is another cluster-string of type stype. Since the result of the σ−operator is always a
cluster-string, a materialization operator MAT is needed to transform the cluster-string into real-world
objects and their relationships for presentation to the user.

4. THE ΣΣQL QUERY LANGUAGE

ΣQL is an extension of SQL to the case of multimedia sources. In fact, it is able to query seamlessly
traditional relational tables and multimedia sources and their combination. The ΣQL query language
operates on the extended multimedia static structure MSS which will be described in Section 6. The
syntax of ΣQL can be presented in BNF notation:

<query>::= <select_type> <dimension_list>
CLUSTER <cluster_type> <cluster_values>
FROM <source>
WHERE <condition>
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PRESENT <presentation_description>
<select_type> ::= SELECT | MERGE_AND | MERGE_OR
<dimension_list> ::= <dimension>, <dimension_list> | <dimension>
<dimension>::= x | y | z | t | image_object | audio_object | video_object | type | attribute | object | ..
<cluster_type ::=  ε | interval_projection | ..
<cluster_values> ::= * | <cluster_list>
<cluster_list> ::= <cluster_val>, <cluster_list> | <cluster_val>
<cluster_val>::= <val> | OPEN <val>

| (<val> ALIAS <identifier>) | OPEN (<val> ALIAS <identifier>)
<val> ::= <variable_identifier> | <string_constant> | <numeric_constant>
<source>::= <query> | <source_name>
<condition>::= <string>
<presentation_description> ::= <string>
<source_name> ::= <source_identifier>

A template of an ΣQL query is given below:

SELECT dimension_list
CLUSTER [cluster_type] [OPEN] cluster_val1, .., [OPEN] cluster_valn

FROM source
WHERE conditions
PRESENT presentation_description

which can be translated as follows: "Given a source (FROM source) and a list of dimensions (SELECT

dimensions), select clusters (CLUSTER) corresponding to a list of projection values or variables ([OPEN]

cluster_val1, ..) on the dimension axes using the default or a particular clustering mechanism ([cluster_type]).
The clusters must satisfy a set of conditions (WHERE conditions) on the existing projection variables
and/or on cluster contents if these are open ([OPEN]). The final result is presented according to a set of
presentation specifications (PRESENT presentation_description)."

Each σ−query can be expressed as an ΣQL query. For example, the σ−query σs,κ(s1, s2
o, s3, .., sn)φ R

can be translated as follows:

SELECT s
CLUSTER κ  s1, OPEN s2, s3, .., sn

FROM R
WHERE φ

A σ−query can be processed according to the following procedure.

Procedure σ−query_Processor(σs,κ (s1, s2, s3, .., sn) R)
Input: (1) A cluster-string representing R, and (2) a σ−query.
Output: The retrieval results.
Step 1: Apply cutting mechanism κ to R to find all of its sub-clusters according to the clustering (s1,

s2, s3, .., sn).
Step 2: Apply σs,κ to all the clusters Cs1, Cs2, ... , Csn and return a cluster-string (a relational

expression) on them.
Step 3: For each sub-cluster Csi , if si is closed it is treated as a single object and σ(Csi) = Csi.  If si is

open it is treated as a set of objects and σ can be applied to the constituent objects that may
be sub-sub-clusters.
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The above algorithm is recursive, i.e., each R may itself be the form σw,κ (w1, w2, w3, ... , wn) R' and
can be evaluated recursively.

5. AN ILLUSTRATION TO MULTISENSOR DATA FUSION

In this section, ΣQL will be illustrated with a query that uses data from two different sensors, i.e. a
laser radar and a video. The data from these two sensors are heterogeneous with respect to each
other. An example of a laser radar image is given in Figure 2. This image shows a parking with a
fairly large number of cars, which look like rectangles when viewed from the top. The only moving
car can be seen in the lower right part of the image with a north-south orientation while all other
cars in the image have an east-west orientation. The moving car and five of its parked neighbours
can also be seen in Figure 4. This image is a somewhat enlarged version of a part of the image in
Figure 2 and viewed in an elevation angle that shows the three dimensions of the image. The holes
at the vehicles in this figure are due to the fact that no information from the sides of the vehicles has
been registered.

Figure 2. An example of a laser radar image taken across a parking with a moving car in the lower
right part of the image in north-south orientation.

Laser radar images are characterized by being three dimensional and in having geometric
properties, that is, each image point is represented with x-, y- and z-coordinate values. The
particular laser radar used here, is manufactured by SAAB Dynamics in Sweden, is helicopter born
and generates image elements from a laser beam that is split into short pulses by a rotating mirror.
The laser pulses are transmitted to the ground, in a scanning movement, and when reflected back to
the platform a receiver collects the returning pulses which are stored and analyzed. The result of the
analyze are points represented with their three coordinates. There is also a time indication for each
point. The resolution of a laser radar image is about 0.3 m.
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Figure 3. Two video frames showing a white car at the entrance in the middle of the image (a) and
the white car between some of the parked cars (b).

The video, see Figure 3 (a) and (b), is of ordinary type and carried by the same platform. The two
sensors are observing the same area at the same time. This means, that most cars in the parking can
be seen in the images from both the sensors. The moving car in Figure 3 (a) is outside the parking
and immediately to the left of the entrance and is white. In Figure 3 (b) it has entered the parking
and reached the first of the parked cars. It is quite simple to generate the various projection strings
from both types of sensor images. Figure 5 shows two symbolic images corresponding to the two
video images in Figure 3. Almost identical projection strings can be generated from the laser radar
image.

Figure 4. A narrow slice of the laser radar image in Figure 2 shows the moving car and some of its
parked neighbours.

Basically, the query that is of concern here can be formulated as follows. Assume that we are
interested in determining moving objects along a flight. This can theoretically be done by analyzing
the video alone, but that requires hundreds and probably even more sequential video frames to be
analyzed. This will take both a very long time and really large computational resources, which may
not always be available. Furthermore, this problem cannot, at this time, be solved in real time. By
using images from a laser radar, on the other hand, it is possible to recognize any type of vehicles in
real time with respect to their time and position. This has been shown by Jungert et al. in [12, 13].
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However, it cannot be determined from this sensor whether the vehicles are moving. The solution to
this problem is to analyze the laser radar image to first find occurring vehicles and determine their
position in time and from this information in a second step identify a very limited set of video
frames that includes the vehicles found in the laser radar image. From the now limited set of video
frames it is possible to determine which of the vehicles that are in motion. Finally, in a fusion
process, it can be determined which of the vehicles that are moving. This will be illustrated by the
query below where the query first is split into two subqueries that correspond to queries concerned
with data from just one of the sensors. In the final step, it will also be demonstrated how the
information from the sensors is fused in order to answer the query.

Figure 5. Two symbolic images showing the situation of the two video frames in Figure 3 with the
moving car and its close neighbours and the corresponding interval projection strings [8].

An important problem that is not addressed in this work, but will be subject to future research, is the
handling of uncertain sensor information. Clearly, this is a very important problem that cannot be
excluded when designing a query language for sensor data fusion, where in particular all input data
come from heterogeneous data sources. However, we have found it necessary to address the basic
query techniques, the syntax of the query language and the basic abstract spatial/temporal structures
for reasoning first. In this perspective, the query is first represented as σ-sequences and then
translated into ΣQL-syntax.

subquery1: Are there any moving objects in the video sequence in the time interval t1 through t2 ?

Q1 = σmotion(moving)σtype(vehicle) σxy,interval_cutting(*)
σt(T

o)T mod 10 = 0 and T>t1 and T <t2

σmedia_sources (videoo)media_sources

subquery2: Are there any vehicles in the laser radar image in the time interval t1 through t2 ?

Q2 = σtype (vehicle) σxyz,interval_cutting(*)σt(T
o) T>t1 and T<t2

σmedia_sources(laser_radaro) media_sources

The subquery Q1 first selects the video source and then the video frames which all are opened.
However, the selection of video frames also includes some conditions with respect to which frames

a0

a 1

a 2
a 5

a4

a 3

a
5

a
4

a 3
a1

a
2

a0

u : a 0 s <  a 1 sa2 s <  a 0e <  a 1ea2e <
a3 sa4 sa5 s< a 3ea4ea5e

v : a0 s< a 0e < a1 sa3 s <  a1ea3e <
a4 s< a4e < a 2 sa5 s <  a2ea5e

u : a1 sa2 s <  a1ea2e < a 0 s <  a0e <
a3 sa4 sa5 s< a 3ea4ea5e

v : a0 s< a1 sa3 s <a1ea3e < a0e <
a4 s< a 4e < a 2 sa5 s <  a2ea5e
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to accept and in which time interval. In this case we have chosen to select each tenth video frame
within the interval [t1,t2]. In the next selection the σxy-operator is applied to the video frames using
the interval cutting mechanism [8, 9]. This operator generates the (u,v)-strings from which the
object types are determined by the σtype-operator. That is, in this particular case, the vehicles, in the
selected frames. Eventually the vehicles in motion are determined by the application of the motion
operator. The motion string (m) is generated from the time projection string (t) where the single
video frames are opened with respect to the x- and y-dimensions, i.e.:

t: (u: a0s < a 1s a 2s < a 0e < a 1e a 2e < a 3s a 4s a 5s < a 3e a 4e a 5e,

v: a0s < a 0e < a 1s a 3s < a 1e a 3e < a 4s < a 4e < a 2s a 5s < a 2e a 5e) <   

(u: ..., v: ...) <
(u: a1s a 2s < a 1e a 2e < a 0s < a 0e < a 3s a 4s a 5s < a 3e a 4e a 5e,

v: a0s < a 1s a 3s < a 1e a 3e < a 0e < a 4s < a 4e < a 2s a 5s < a 2e a 5e) <
(u: ..., v: ...) <
...

From this string the motion string is generated by applying the σ-operator which generates a string
similar to an implicit merge_or-operation, i.e.:

m: t: (u: a0s < a 0e < a ´0s < a ´0e, v: a 0s < a 0e < a ´0s < a ´0e)

The subquery Q2 returns first the (u,v)-strings for the time interval [t1,t2]. This is sufficient, since
that gives the relative position of the vehicles (the z-information is normally unnecessary for this
purpose and will only be used for object type recognition). An intermediate result of the subquery
will thus look like:

u: a1s a 2s < a 1e a 2e < a 0s < a 0e < a 3s a 4s a 5s < a 3e a 4e a 5e

v: a1s a 3s < a 0s < a 1e a 3e < a 4s < a 4e < a 2s a 5s < a 0e < a 2e a 5e

The laser scanner determines each point in a sequential order so that an object that is in the lower
left corner of the image is first registered by the sensor. Therefore it is possible to implicitly
determine the t-string, if needed.

t: (u: a1) <... < (u: a i) ...

This, however, requires a further application of σt but that has not been applied here. However, it
can, nevertheless, be motivated because it may support the outcome of the data fusion process.

In the final step of this subquery existing vehicles are determined by applying the σtype-operator.

The two subqueries can now be fused with respect to equality. For this purpose another operator
that can perform this is needed. However, this fusion operator is different from the σ-operators that
have been used, so far, since its input will be coming from multiple data sources, that must be of
equal type. For this reason, a fusion operator, called φ is defined. This operator performs the data
fusion operation, here called merge_and, with respect to the three dimensions x, y and t; in other
words, it fuses the vehicle information with respect to equality of type and position in time. The
object type in question is in this case already determined. All object types are consequently equal in
both subqueries. The final query with the fusion operator thus becomes:

Q3 = φxyt
merge-and(*)(Q1,Q2)



12

This means that a fusion operation is applied such that only those objects selected from the two
subqueries and which can be associated to each other will remain in the output string, which here is
called mo (motion objects). This gives us the following result:

mo: a0

The complete query now looks like:

φxyt
merge-and(*)

(σmotion(moving)σtype(vehicle) σxy,interval_cutting(*)
σt(T

o)T mod 10 = 0 and T>t1 and T <t2

σmedia_sources (videoo)media_sources,

σtype (vehicle) σxyz,interval_cutting(*)σt(T
o) T>t1 and T<t2

σmedia_sources(laser_radaro) media_sources)

The important problem here is, as always in data fusion, the association problem. In other words,
the query must determine whether a certain object found in one of the two subqueries is the same as
any of the vehicles found in the other subquery. This problem is generally very difficult and is
discussed more deeply in [23].

Translating the σ-query into ΣQL-syntax is now a fairly simple task and the result from this
translation becomes:

MERGE-AND x,y,t
CLUSTER *,*,[t1,t2]
FROM (SELECT type

CLUSTER vehicle
FROM SELECT x,y,z

CLUSTER interval, *
FROM SELECT t

CLUSTER OPEN (* ALIAS T)
FROM SELECT media_sources

CLUSTER OPEN laser_radar
FROM media_sources

WHERE T > t1 AND T < t2,

SELECT motion
CLUSTER moving
FROM SELECT type

CLUSTER vehicle
FROM SELECT x,y

CLUSTER interval *
FROM SELECT t

CLUSTER OPEN (* ALIAS T)
FROM SELECT media_sources

CLUSTER OPEN video
FROM media_sources

WHERE T mod 10 = 0 AND T>t1 AND T<t2)
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6. REPRESENTING A MULTIMEDIA SOURCE

In the previous sections we have described a data source as a simple projection string. However, in
general, in order to describe data sources we need a more complex data structure. In this section we
describe an extension of the MSS model proposed in [6] for the description of multimedia data.
A multimedia source description is composed of a hierarchy of entities. Each entity has the
following format:

<name, type, list of legal descriptions>

where:
1. the name is the entity identifier
2. the type is the entity type
3. each description is a triple ((d1..dm): {e1, e2, .., en}: rel_expr) with m ≥ 1 and n ≥ 0 containing

• a list of dimensions di according to which the entity is being clustered
• a set of component entity identifiers resulting from the clustering
• a relational expression where relations (depending on the dimensions) are used to relate the

component entities
A description is legal if n = 0 or a clustering mechanism able to derive the description from the
source is available. In the case n=0, the entity is an atom with respect to the description
dimension and the relational expression reduces to a simple value.

Depending on the chosen description type (and consequently on the associated clustering
mechanism) a source can be seen as a temporal sequence of entities, or a spatial disposition of
entities, or as a set of attribute-value pairs, etc.
In general we make use of the 4 type of descriptions:

1. Temporal descriptions: the dimension is given by the time axis and the relational expression
makes use of the temporal relation before than denoted as "<". This is a legal description for
video sources: the clustering is given by the extraction of the single frames making the video.
As an example, a video clip segment of three frames R, S, T may be described by the triple
(time: {R, S, T}: (t: R < S < T)). On the other hand, the triple (time: {}: t) is a temporal
description of a frame where the empty set indicates that the frame is atomic with respect to
time and then cannot be decomposed, and t indicates its projection value on the time axis.

Figure 6. A simple symbolic picture

2. x-coord spatial description: the dimension is given by  the x axis of a Cartesian plane and the
relational expression is written as a 1-D string [10]. There are many clustering available to
produce a 1-D string but the Fundamental Symbolic Projection is taken as the default clustering
for this description.
As an example, the description (x: {a, b, c}: (u: a = b < c)) represents the projection on the x
axis of the symbolic picture in Figure 6.

a

b c
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3. y-coord spatial description: the dimension is given by  the y axis of a Cartesian plane and the
relational expression is written as a 1-D string [10]. Again the Fundamental Symbolic
Projection si considered the default clustering mechanism.
As an example, the triple ((x, y): {a, b, c}: ((u : a = b < c), (v: b=c<a))) is a spatial description
along the two axis x and y of the symbolic picture in Figure 6. The use of both the x and y
dimensions produces a 2-D string as relational expression.

4. object description: the dimension is given by  a set-of-attributes (or object) axis and the
relational expression reduces to a set of facts (AttributeName : Value) on the component
entities. An entity is always considered atomic with respect to the dimension object.
As an example, the following triple (object,: {}: {(clip_id : X), (length :Y)}) is the description
of a video clip whose clip_id and length have values X and Y, respectively. Note that the
descriptions (time: {}: 3) and (object: {}: {(time : 3)}) are equivalent. Moreover, since there is
no clustering an object description is always legal.

As an example, let us consider a video clip segment showing two trees and three walking persons.
The video is being clustered according to the time dimension in three consecutive frames as shown
in Figure 7. The video represents  Cathy (c), Bill (b) and Dan (d) moving east, and two trees (a). It
can be noted that Dan moves slowly and Cathy goes out of the scene in the third frame. The
following entities are an MSS representation of the video:

[R, video, (τ: {R1, R2, R3}: (t: R1 < R2 < R3))]
[ R1, frame, (τ: {}: t1),

((x, y): {a, b, c, d}: ((u: a < b < c=d < a), (v: d < b < a= a < c))) ]
[ R2, frame, (τ: {}: t2),

((x, y): {a, b, c, d}: ((u: a <  < b=d < a=c), (v: d < b < a= a < c))) ]
[ R3, frame, (τ: {}: t3),

((x, y): {a, b, d}: ((u: a <  <  < a=b=d), (v: d < b < a= a < ))) ]
[ a, plant, (object: {}: {(name: tree)})]
[ b, person, (object: {}: {(name: Bill)})]
[ c, person, (object: {}: {(name: Cathy)})]
[ d, person, (object: {}: {(name: Dan)})]

                            t1                                       t2                                                t3                                                         time

R1                                               R2                                              R3

Figure 7. A video clip segment of three frames R1, R2, R3

In the following we provide some examples of ΣQL queries acting on the above MSS.

Example 1. In the following query we want to retrieve all the frames showing Cathy. Moreover we
want to know the temporal and spatial relation among them.
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SELECT x
CLUSTER *
FROM

SELECT  t
CLUSTER  OPEN (* ALIAS ANYCLUSTER)
FROM R
WHERE ANYCLUSTER contains c

This query retrieves the two video frames occurring at times t1 and t2 and the temporal relations
among the two frames.  Since t is preceded by the keyword OPEN it has been possible to set a
condition in the WHERE clause on the content of the frame at a generic time aliased as
ANYCLUSTER.
The fact that no cutting mechanism is provided  indicates that the default cutting mechanism is used
to individuate the three clusters. The mathematical notation for the query is:

σx(*)σt(T
o)cluster(T) contains c R.

The query returns the entity
[ result, video,
     (τ: [R1, frame, (t: {}: t1), ((x, y): {a, b, c, d}: ((u: a < b < c=d < a), (v: d < b < a= a < c)))] <
          [R2, frame, (t: {}: t2), ((x, y): {a, b, c, d}: ((u: a << b=d <a=c), (v: d < b < a= a < c)))] < ) ]
in its formal representation.

Example 2:

Let us consider the following query to retrieve all the video clip parts showing the interaction in the
time along the x axis of Cathy, Bill and any other video object interacting with them.

SELECT x
CLUSTER X
FROM

SELECT t
CLUSTER OPEN (* ALIAS ANY)
FROM R
WHERE ANY contains c  and ANY contains b

WHERE  X = c.x  or X = b.x

Given the video input sequence shown in Figure 7 the nested sub-query will return the entity
[result1, video, (τ:

[ R1, frame, (τ: {}: t1),
((x, y): {a, b, c, d}: ((u: a < b < c=d < a), (v: d < b < a= a < c))) ] <

[ R2, frame, (τ: {}: t2),
((x, y): {a, b, c, d}: ((u: a <  < b=d < a=c), (v: d < b < a= a < c))) ])

]

since only R1 and R2 contain both Cathy and Bill.

The outer query will operate on the entity result1 to produce the output

[result2, video, (τ:
[ R1, frame, (τ: {}: t1),
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(x: {b, c, d}: ((u: < b < c=d <))) ] <
[ R2, frame, (τ: {}: t2),

(x: {a, b, c, d}: ((u: <  < b=d < a=c))) ])
]

where only the clusters built along the x axis containing b and c are left.

Example 3:

Suppose now we are interested in the video clip part involving only the interactions between Bill
and Cathy and no other object. By querying the entity result2 from example 2 then we can build the
following query:

SELECT object
CLUSTER c, b
FROM result2

The result will then be
[result3, video, (τ:

[ R1, frame, (τ: {}: t1),
(x: {b, c}: ((u: < b < c <))) ] <

[ R2, frame, (τ: {}: t2),
(x: {b, c}: ((u: <  < b < c))) ])

]

The final query can then be read as "retrieve only the interactions between Cathy and Bill along with
the x-dimension during the execution of the whole video R".
By looking at the disposition of the spatial-temporal relations < in the entity result3, it is easy to
note how Bill and Cathy are moving at the same speed along the x-axis in the first two frames of the
video clip.

7. ΣΣQL QUERY PROCESSING

Let us now see the phases needed to process a ΣQL query.
1. lexical and syntactic analysis
2. semantic correctness or transformational analysis where  the following actions are taken:

a. control the compatibility between  the dimensions and the sources  in each sub-query
b. check if the overall query is consistent, i.e., there exist representations for the intermediate

results that make the query execution feasible. If so, keep track of the representations.
(Intermediate result type inference)

c. For each intermediate result use a feasible representation (this can be done with the user
help)

d. if the main source is not structured then
build the MSS schema

else
check if there exists a query-engine that allows to query the structured source
(MMDB)

3. query optimization
4. query execution

a. if the main source is not structured then
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• populate the MSS structure according to the schema defined  during the semantic
analysis  by extracting the appropriate information from the source. (The
semantic validation implies that the algorithms to extract the information from
the source are available)

• execute the query against the MSS
• present the results

else
• send the query to the query-engine and wait for results
• present the results

To improve the efficiency, the query execution can be pipelined.

7.1. Transformational analysis - The environment representation
In order to perform the transformational analysis of a ΣQL query, knowledge about the Multimedia
Query Environment (MQE for short) is needed.  An MQE is composed by a set of data structures
and algorithms for the analysis of multimedia data, the extraction of features and their conversion in
different representations.
In particular the processor must know
1. the σ dimensions that are supported
2. the sources that can be handled
3. the compatibility between clusterings on given dimensions and sources, i.e., if there exist

algorithms to cluster a given source along a given dimension
4. the representations that the MQE is able to build from multimedia data
5. the compatibility between different representations, i.e., given  two representations, if there exist

operators defined on them.
6. which are the representations that can be build from a source when a given clustering along a

dimension on it has been given.

Let 
D be the set of dimensions supported by the environment
S be the set of sources that can be handled by the environment
C be the set of clusterings that can be applied along any given dimension
R be the set of representations that the environment is able to build from sources
O be the set of operators op: R × R → R able to combine two representations

The environment can be coded through three 3D tables: the dimension-clustering-source or DCS
table, the dimension-clustering-representation or DCR table, and the operator compatibility
representation-representation-operator or RRO table.
The DCS table is indexed by the triple (d, c, s) where d is a dimension, c is a clustering and s is a
source. Each table entry contains a (possibly empty) set of representations for s when clustered
under clustering c along the dimension d.
For this table, the entry:

DCS (d, c, s) =  set_of_rep

if and only if, for each r' ∈ set_of_rep there exists an  algorithm in the environment translating the
data source s under clustering c along the dimension d into the representation r'.

The DCR table is indexed by the triple (d, c, r) where d is a dimension, c is a clustering and r is a
representation. Each table entry contains a (possibly empty) set of representations derived from r
when cut under clustering c along the dimension d.
For this table, the entry:
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DCR (d, c, r) =  set_of_rep

if and only if, for each r' ∈ set_of_rep there exists an  algorithm in the environment producing the
representation r'  by cutting the representation r under clustering c along the dimension d.

The compatibility representation table RRO is indexed by the triple (r, r', op) where r and r' are
representations, and op is an operator on representations.  Each table entry contains a (possibly
empty) set of representations  obtained by applying op on r and r'. For this table, the entry:

RRO(r, r', op) =  set_of_rep

if and only if, for each r'' ∈ set_of_rep there exists an  implementation, in the environment, of the
operator op producing the representation r'' when applied to r and r'.

7.2. Transformational analysis - The query representation
Once a Query Multimedia Environment Ψ has been defined it becomes possible to check queries
for consistency under Ψ. In order to describe how the checks are realized we need to describe an
alternative representation of a ∑QL query: we use a tree structure named consistency check tree
with three kinds of nodes (SELECT-CLUSTER, SOURCE, and MERGE nodes) and two kinds of
edges (FROM and ARGUMENT edges) as shown in Figure 8.

SELECT-CLUSTER  SOURCE     MERGE FROM ARGUMENT

Figure 8. Visual tokens to represent a σ-query

The node SELECT-CLUSTER is labeled with the dimension d and the cluster c as appearing in the
SELECT and CLUSTER clauses. The node SOURCE and MERGE are labeled by the source s and
the operator op, respectively, to which they refer. Since we will only make use of  binary operators,
the node MERGE can only have two children.
The tree structure can be easily understood by the following examples.

Example 4:

Given the query
SELECT t
CLUSTER  t1, t2
FROM movie1

its consistency check tree is given by

Example 5:

Given the query
SELECT x
CLUSTER X

d, c d, cd, c s   op

 s

t,

 movie1
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FROM
SELECT t
CLUSTER OPEN (* ALIAS ANY)
FROM R
WHERE ANY contains c  and ANY contains b

WHERE  X = c.x  or X = b.x

its consistency check tree is given by

Example 6:

Given the query :

SELECT type
CLUSTER c1 , c2
FROM

MERGE_OR t
CLUSTER t1 , t2 , t3

FROM
(SELECT t
CLUSTER t1 , t2 , t3

FROM
SELECT audio-object
CLUSTER *
FROM audio_source,

SELECT t
CLUSTER t1 , t2 , t3

FROM
SELECT video-object
CLUSTER *
FROM video_source)

its consistency check tree is given by :

 s

x,

 s

t,

  R

  OR

t, t,

type,
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Given a σ−query it is always possible to build a consistency check tree by using the traditional
language technology. In the following section we will give an algorithm that, visiting a consistency
check tree, will be able to decide if the corresponding  query is consistent in the given environment
and how the involved sources have to be clustered and represented in order to be searched
efficiently.

Once a query has been declared consistent under a certain environment it can be executed in that
environment. Before being executed, however, each intermediate result must be assigned one and
only one representation. In fact the consistency check allows having more than one feasible
representation for a temporary result. The final assignment can be done either randomly or letting
the user select the type of representation at each step. How to make intuitive the user selection of a
representation will be taken care of from the interactive visual query editor.

8. TRANSFORMATIONAL ANALYSIS FOR Σ ΣQL QUERY PROCESSING

In the following we provide the algorithm Consistency Check that annotates each internal node of a
consistency check tree with a set of legal  representations if the original query is consistent or an
error message otherwise. A representation is legal for a node if it can be derived either by clustering
along a dimension a source or a representation, or by applying an operation on the representations
of the child nodes.
The algorithm is made of two parts. The first part is based on a bottom-up visit of the tree and at
each step it accesses one of the three environment tables DCS, DCR or RRO to check whether one
or more representations for the current node can be synthesized. If the query is consistent, the
algorithm will annotate all the internal nodes and the root with a non empty set of legal
representations. It will emit an error message otherwise.
For each assigned representation the algorithm will also keep track of the representations from
where it has been derived. This information will be used by the second part of the algorithm to
assign a single legal representation to each internal node of the tree.

Algorithm Consistency Check.
Input: a consistency check tree for a σ−query Q and an environment Ψ  with tables DCS, DCR and

RRO.
Output: an annotated consistency check tree and a representation assignment for each internal tree
node if the query is consistent or a message error otherwise.

Method:

1. Apply a bottom-up visit to the tree and for each node visited behave in the following way:

if the node is a SOURCE node then do nothing
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if the node is a SELECT-CLUSTER node SC labeled (d, c)  connected through a FROM edge
to a SOURCE node labeled s

then
Annotate SC with the set of representations from the entry DCS(d, c, s)
if DCS(d, c, s) = ∅ then

emit "Source s can't be clustered through c under dimension d in the current
environment";

exit.

if the node is a MERGE node OP labeled op with two child nodes labeled with the sets of
representations set1 and set2, respectively

then
Annotate OP with the set of representations set3  such that r' ∈ set3 if and only if there exists

at least a pair of representations r1 ∈ set1 and r2 ∈ set2  and r' ∈ RRO(r1, r2, op).
Create a connection from each r' ∈ set3 to each r1 ∈ set1 and r2 ∈ set2  such that

r' ∈ RRO(r1, r2, op)
if set3 = ∅ then

emit "The representations in set1 and set2 are not compatible under the operator op
in the current environment";

exit.

if the node is a SELECT-CLUSTER node SC labeled (d, c)  connected through a FROM edge
to a node labeled with a set of representations set1

then
Annotate SC with the set of representations set2  such that r' ∈ set2 if and only if there exists
at least a representation r ∈ set1 and r' ∈ DCR(d, c, r).
Create a connection from each r' ∈ set2 to each r ∈ set1 such that r' ∈ DCR(d, c, r).
if set2 = ∅ then

emit "The representations in set1 can't be opened through c under dimension d in the
current environment";

exit.

2. Apply a top-down visit of the tree following the representation connections built in step 1
according to the following instructions:

Select and mark a representation head_r from the set of representations annotating the tree root.
Add  head_r to the empty set Marked_r
While Marked_r is not empty do

Extract a representation from Marked_r
Follow all the connections leaving that representation.
If it is connected to only one representation in the same set then select and mark that

representation
If it is connected to more than one representation in the same set then select and mark

only one of them.
Add all the marked representations to Marked_r

endwhile

end Algorithm
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In step 2 the selections of particular representations can be done either randomly or under
suggestions of a user. These suggestions can be obtained allowing the user to visually define his
representation preferences.
The annotated consistency check tree resulting from the execution of the algorithm allows to build a
query customized MSS for each source referred in the original query. This will allow an effective
execution of the query against the coded MSSs.

Example 7:

 Let us consider the query of Example 5 with its consistency check tree. The algorithm produces the
following annotated tree assumed that DCS(t, default_cutting, video) = {video_sequence} and
DCR(x, default_cutting, video_sequence)= {1D-string}. Step 2 of the algorithm in this case just
needs to mark the single representations in each set.

The resulting MSS describing the video R will then need to store a video_sequence projected in the
time dimension such that it can be opened in 1D_string representations along the x dimension.

9. DISCUSSION AND CONCLUSION

As explained in previous sections, ΣQL can express both spatial and temporal constraints
individually using the SELECT/CLUSTER construct and nested subqueries. Its limitation seems to
be that constraints simultaneously involving space and time cannot be easily expressed, unless
embedded in the WHERE clause. Although such constraints may be rare in practical applications,
further investigation is needed in order to deal with such complex constraints.

A visual language version of this new ΣQL language may be suitable for the Hypermapped Virtual
World (HVW) information model [6], which is a combination of hypermap with virtual reality, so
that each hyperlink can lead to a virtual world. Hypermaps can be used advantageously as a
metaphor for the representation of all the multimedia hyperbase elements. For example, in
GeoAnchor [2] a map can be built dynamically as a view of the multimedia hyperbase. Each
displayed geometry is an anchor to either a geographic node or to a related node. Hence, the map on
the screen acts both as an index to the nodes and as a view to the multimedia hyperbase. As another
example, in a Virtual Classroom a hypermap can also be used as a metaphor to link the most
frequently accessed items such as reading rooms, book shelves, etc. to present different views to the
end user. This combined metaphor of Hypermapped Virtual Classroom (which is a combination of
the VR information space and the logical information hyperspace [7]) may lead to efficient access
of multimedia information in a distance learning environment. The σ−query may serve as the basis
of a visual query language for the Hypermapped Virtual World.

The visual ΣQL can be applied directly to a scene such as Figure 1, by visually selecting and
clustering (decomposing) the 2D (or 3D, 4D, etc.) space. Applications to distance learning, remote
sensing, etc. can be explored for the Visual ΣQL. Another important application of visual ΣQL, as

 s

x, , {1D-string}

 s

t, , {video_sequence}

 video R
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pointed out in Section 6, is to facilitate user-system interaction in selecting feasible representations
in the transformational analysis of a σ−query, in other words, in computer-assisted visual reasoning.

In addition to building the ΣQL prototype, we need to further evaluate its efficiency by testing the
prototype against multimedia static schemas (MSSs) of various degree of complexity. This can be
accomplished by carefully selecting the application domains, taking sample multimedia data and
constructing automatically many similar MSSs with different degree of complexity, and running the
ΣQL prototype against different MSSs to compare the results.

We will also evaluate the effectiveness of the proposed spatial/temporal query language by studying
several different applications. Formative evaluation will be carried out to improve the design, and
summative evaluation will be carried out to conclude the experimental studies.
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