Formal Definition of the Sentient Map

Formal Definition of the Sentient Map

If O1, O2, ...., On are sentient maps, so is f({O1, O2, ..., On}). In general, a sentient map O is a well-formed expression involving other sentient maps Oi, the opening bracket '{' and the closing bracket '}'. We write O = f({O1, O2, ..., On}). Each sentient map Oi has a profile Pi = (Pi1, Pi2, ...., Pim) where each attribute Pij denotes some characteristics of Oi.

The match operator matcht(f({O1, O2, ..., On}, {O1', O2', ..., Om'})) finds threshold-t matched sentient map objects from {O1', O2', ..., Om'}. The abstract operator abstractj (f({O1, O2, ..., On})) extracts level-j sentient map objects. The weave operator weavetype-k(f({O1, O2, ..., On})) weaves together type-k sentient map objects. The customize operator customizestyle-s(f({O1, O2, ..., On})) creates a style-s customized presentation.