Formal Definition of the Sentient Map
Formal Definition of the Sentient Map
If O1, O2, ...., On are sentient maps, so is f({O1, O2, ..., On}).
In general, a sentient map O is a well-formed expression involving
other sentient maps Oi, the opening
bracket '{' and the closing bracket '}'. We write
O = f({O1, O2, ..., On}).
Each sentient map Oi has a profile Pi = (Pi1, Pi2, ...., Pim)
where each attribute Pij denotes some characteristics of Oi.
The match operator
matcht(f({O1, O2, ..., On}, {O1', O2', ..., Om'}))
finds threshold-t matched sentient map objects from {O1', O2', ..., Om'}.
The abstract operator
abstractj (f({O1, O2, ..., On}))
extracts level-j sentient map objects.
The weave operator
weavetype-k(f({O1, O2, ..., On}))
weaves together type-k sentient map objects.
The customize operator
customizestyle-s(f({O1, O2, ..., On}))
creates a style-s customized presentation.