
, , 1{27 ()

c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Automating the Organization of Presentations for

Playout Management in Multimedia Databases

VELI HAKKOYMAZ veli@ces.cwru.edu

G�ULTEKIN �OZSOYO�GLU tekin@ces.cwru.edu

Department of Computer Engineering and Science, Case Western Reserve University, Cleveland,

OH 44106 USA

Received May 1, 1991

Editor:

Abstract. We introduce a constraint-driven methodology for the automated assembly, organi-

zation and playout of presentations from multimedia databases. We use inclusion and exclusion

constraints for extracting a semantically coherent set of multimedia segments. Presentation or-

ganization constraints are utilized for organizing the multimedia segments into a presentation,

which in turn helps decide the playout order of the extracted multimedia segments. The playout

order of the segments is represented in a presentation graph. If the speci�ed set of organization

constraints are not su�cient to construct a unique presentation graph, we propose two techniques

so that a unique graph is constructible. We also propose two playout algorithms, one for the

generation, start and termination of playout agents, the other for dynamic control of playout

management on organized presentations. The characteristics of these algorithms are expressed in

terms of presentation playout parameters.

Keywords: Multimedia Presentation, Presentation Organization, Playout Synchronization, Syn-

chronized Presentation, Multimedia Databases

1. Introduction

In multimedia computing research, organizing various multimedia segments for a

semantically coherent presentation, without any regard to the multimedia database

that contains these segments, is an active research area under the title of presen-

tation managers. Multimedia computing integrates di�erent media types such as

audio, video, text, and graphic images. Each medium can be modeled as a stream

[12, 7, 6, 3, 18] which can be broken into a sequence of segments. A multimedia

presentation refers to the presentation of multimedia segments using a number of

output devices such as speakers for audio, monitors for text and video and so on.

In this paper, we discuss the issues involved in automatically organizing presen-

tations from multimedia databases. In particular, we introduce a methodology to

automate the organization and playout of multimedia presentations.

The organization of presentations is a complex task in that the display order of

presentation contents (in time and space) must be speci�ed. Suppose that an edu-

cation technologist is developing a presentation called Training that contains audio,

video, and text media types. The critical decisions for presentation construction

2

include (1) what the contents are, and (2) how the contents are organized (i.e., some

parts of audio and video may be temporally related and have to be presented in

parallel; some other parts can only be presented after certain subjects are covered,

etc). Once the decision is made on the organization of the contents of the presen-

tation, it must be conveyed to the end user in the correct organizational order and

in a timely fashion.

In this research, we consider an environment where users request multimedia pre-

sentations of a �xed time length. For example, a user may request a one-hour long

audio-video summary of a presentation about the programming language C++. We

also envision that the user (in some way) can specify the maximum number of

monitor windows which can be open simultaneously for the presentation of parallel

streams. Such a process can have multiple interactions between a user and the

presentation system. For example, the system may respond to a user request by

saying that the requested presentation cannot be performed in one hour if it is to

be presented using the speci�ed number of parallel windows. To automate the con-

struction and playout of presentations, we propose a \constraint-driven approach".

More speci�cally, we utilize

� inclusion and exclusion constraints for extracting a semantically coherent set of

multimedia segments from the multimedia database,

� presentation organization constraints for organizing and deciding the playout

order of the extracted multimedia segments,

� playout-control constraints in order to provide dynamic, playout-time controls

for end users, and

� physical-playout constraints for helping to ensure a jitter- or hiccup-free playout

of multimedia data.

We use inclusion and exclusion constraints between segments to facilitate the

automated inclusion or exclusion of segments into a presentation. Consider an edu-

cational math lecture in video. In any presentation that contains a video sequence

Proof illustrating the proof of a theorem, another video sequence Thm that de�nes

the theorem should also be included. This is an inclusion requirement ofThm based

on the included segment Proof . However, it is clear that Thm can be included in

a presentation without including Proof . To summarize, when a user speci�es (by

pointing and clicking) a set of segments for a presentation, the DBMS, by using

inclusion and exclusion constraints, adds segments into and/or deletes segments

from the set in order to satisfy the inclusion and exclusion constraints. In a recent

work[18] we have characterized inclusion and exclusion dependencies, axiomatized

a subset, given two algorithms for automated presentation assembly, and discussed

their complexity.

Presentation organization constraints allow the system to automate the organiza-

tion of concurrent presentations of selected segments (that already satisfy inclusion

and exclusion constraints). We assume that presentation organization constraints

3

are entered into the database a priori by the database administrator, and, for any set

of user-selected segments, the satisfaction of presentation organization constraints

leads to an organized presentation. Consider the educational math video example.

The video sequence Proof must be preceded (but not necessarily immediately) by

another video sequence, say Thm, that de�nes the theorem. This is a sequentializer

constraint for a presentation that contains Thm and Proof (as Thm should pre-

cede Proof). In this paper, we discuss how to organize a concurrent presentation

(represented by a \presentation graph") by utilizing the presentation organization

constraints. We assume that the database contains various presentation organiza-

tion constraints. Users express a presentation organization query by specifying (a)

an upper bound on the time length of the presentation, (b) an upper bound on

the number of parallel monitor windows (for video playout) open at any time, (c)

a set of selected segments (which are expanded, if necessary, into a set of \coher-

ent" segments by utilizing inclusion and exclusion constraints and the algorithms of

our earlier work [18]). Note that the requirement (b) speci�es the maximum level

of concurrency (i.e., the number of concurrently played-out video segments) at a

given time. Since a computer monitor has a physical size limit, it (and, perhaps the

computing power of the playout environment) has an upper bound on the number

of concurrent segments (i.e., windows) it can e�ectively play. For example, clearly,

playing out over 6 concurrent (monitor) windows at a given time is excessive. Such

a requirement is captured by the requirement (b) above.

There is a tradeo� to satisfying requirements (a) and (b) at the same time, and

we show in section 4 that this is an NP-complete problem. Therefore, rather than

�nding the optimum solution, we propose and evaluate two heuristics that allow us

to obtain a unique presentation graph satisfying the requirements (a) and (b) in a

near-optimum manner.

Once a concurrent presentation is speci�ed (using the presentation graph), it

needs to be played out. We associate a playout agent to each segment in the pre-

sentation, which is a lightweight process (a thread) that plays out the corresponding

multimedia segment. In section 5.1, we describe a semaphore-based technique for

the automated generation, synchronization and termination of playout agents in or-

der to implement the concurrent presentation playout as de�ned by the presentation

graph.

Another issue is to automate the incorporation of playout-time controls into the

assembled presentation. Let A denote the action \Freeze all video streams that are

currently being played out for 20 seconds". The presentation assembly system may

designate a keyboard function key that, when pressed, sends the signal S which

indicates to the \playout manager" software that the action A has to be taken.

This is an example of the incorporation of event-action rules from active databases

into the automated presentation organization problem. (One can extend this model

to incorporate nonevents (negative events) and/or prohibited actions [13], as well.)

When such rules, i.e., constraints, are incorporated into the automated presentation

assembly problem, there is a tradeo� between their satisfaction and the satisfaction

of other constraints. For example, when the above freeze occurs, the presentation

4

Content
Selection

Presentation
Organization

Presentation
Playout

Inclusion/
Exclusion
Constraints

Organization

Constraints

User Control
and Playout
Constraints

Figure 1. Multimedia Presentation System

time deadline may no longer be satis�able, and a playout-time reorganization of

the presentation graph may become necessary. We call such rule-based constraints

playout-control constraints. In this paper, we discuss playout-control constraints

with examples only.

Issues such as physical playout constraints, hiccup-free playout, quality of service

(QoS) guarantees and so on, which are closely related to media presentation, are

not the focus of this paper. The approach we have taken in addressing these issues

is described in [10].

Figure 1 shows the constraint types and their functionality in our multimedia

presentation system. In the rest of this section, we brie
y survey the related work

on presentation and playout management issues. Section 2 presents the basic def-

initions used throughout this paper. Section 3 characterizes the organization con-

straints. In section 4, we formally de�ne the presentation organization problem and

discuss two heuristic methods as an approximation to its solution. In section 5, after

organizing a presentation in section 4, we present two methods for the presentation

playout. Section 6 gives the concluding remarks and the direction of future research.

1.1. Related Work

In recent years, attempts to tackle the problem of preparing multimedia segments

into a multimedia presentation and conveyance of the resulting presentation for

human users have gained momentum in the literature[14, 11, 5, 12, 15, 6, 18, 24, 19].

Little and Ghafoor in [15] made one of the earliest attempts to develop a temporal-

interval based(TIB) model that captures the timing relationships among multime-

dia data segments. They assume that inter-segment temporal relations are either

imposed at the creation time of the multimedia segments (i.e., called live syn-

chronization) or set up arti�cially (i.e., called synthetic synchronization). In their

work, presentation of each multimedia data segment is represented by a time inter-

val (start time, end time, duration). Using this model with the timing information,

they come up with a playout schedule for the segments with `monotonically increas-

ing deadlines' in order to present them in a timely manner. To this extent, they

5

specify the temporal access algorithms to facilitate forward and reverse playout as

well as partial-interval evaluation (for pause-resume operations).

The same problem is tackled by Hoepner [11, 12]. In these works, three distinct

problems in multimedia presentations are identi�ed as determining the contents as

well as the layout of the presentation in time and space. However, the main focus

of the work is concerned with the description of temporal aspects of an abstract

presentation behavior. Synchronization and control of temporally related presen-

tation actions are modeled by presentation frame types, sequentializer, parallelizer,

splitter, combiner, and brancher.

These works mainly deal with modeling the way in which multimedia data seg-

ments are presented, but not the contents or the organization of multimedia presen-

tations. As for the feasibility of providing presentations from multimedia databases

over a distributed multimedia system, there have been several studies in describing

the requirements and design of such systems[24, 19, 17].

Znati and Field in [24] focus on the design of the communication protocols, called

�-channel, to support guaranteed real-time communication for distributed multime-

dia systems. The �-channel is a network level abstraction of a fractional, simplex,

end-to-end communication channel between a source and a destination to support

the requirements of real-time applications.

Another work in [19] by Qazi, Woo and Ghafoor states the need for a speci�cation

model for the communication and synchronization of multimedia segments in a

distributed environment in order to realize successful retrieval, composition and

presentation of multimedia segments.

2. Preliminary De�nitions

We �rst identify the basic presentation organization constraints that enable users

to express the
ow of a multimedia presentation in terms of how and what order

the segments are played out to the user, be it sequential, concurrent, or some

combination of both. In this simple model, no time is involved in expressing the

organization of multimedia segments. An expert user or presentation generator can

express the presentation
ow by specifying the presentation organization constraints

for the multimedia segments that are contained in the presentation.

Basically, some segments may have to be played out in a sequential manner (i.e.,

one is before the other). We represent such a constraint between two segments (i.e.,

say a and b) as sequential(a,b) in the textual form and call it a sequentializer

constraint.

Endings of the playout of some segments may signal the presentation to split into

two or more streams, starting with a segment from each stream. Such a constraint

involves at least three segments, one of which is considered to be a designated

segment. After presenting the designated segment, the remaining segments are

presented in parallel. We represent such a constraint among three segments (i.e.,

say a; b and c) as split(a; b; c) in the textual form, specify the �rst argument a as

the designated segment, and call the constraint a splitter constraint.

6

The last presentation organization constraint type is the merger constraint,

which indicates that, after two or more segments are presented in parallel (i.e.,

concurrently), they will merge into one stream, from which a designated segment

will be presented. Like the splitter constraint, the merger constraint involves at

least three segments, one of which is the designated segment. We represent such

a constraint among three segments (i.e., say a; b; and c) as merge(a; b; c) in the

textual form and specify the last argument c as the designated segment.

Note that no synchronization points (i.e., time values) are speci�ed in this model.

Only relative playout timings of segments are known.

A presentation graph G = (V;E) is a directed graph which is augmented by

two special nodes, initial node I and the �nal node F , where nodes in V (G) are

labeled with the segments in the presentation, and edges in E(G) indicate the

relative presentation order of two segments (i.e., a �! b speci�es that segment

a is \before" segment b in the presentation). Edges are added to a presentation

graph according to the speci�ed organization constraints. Figure 2(i) depicts a

one-to-one correspondence between organization constraints in textual form and

the corresponding graph components.

2.1. Obtaining Subpresentations

A subpresentation corresponds to a connected graph and we informally use the term

subpresentation to refer to a structure that contains a collection of segments and

organization constraints from which a presentation graph is constructible. A more

descriptive de�nition will be given shortly.

Let SS = (s1; s2; � � � ; sn) denote the selected set of multimedia segments that are

to appear in the presentation. Let OC = (o1; o2; � � � ; ot) denote the presentation

organization constraints that are speci�ed for SS.

Given any sets SS and OC, the subpresentations are constructed in two stages.

In the �rst stage, the organizationally related segments are grouped together, and

in the second, after augmenting with two extra nodes and a number of edges, each

group becomes a subpresentation.

Stage 1: Grouping the Segments

1. Create a group Ci for each segment si 2 SS.

2. Consider each organization constraint oi 2 OC (in some arbitrary order).

(A) If oi is of type sequential(sj ; sk)

i. Let C1 be the group that segment sj belongs to, and let C2 be the

group that segment sk belongs to.

ii. Create a new group C3 such that C3 = C1 [C2.

iii. Eliminate the groups C1 and C2 from further consideration.

(B) If oi is of type split(a, S) or merge(S, a) where j S j = n � 2,

7

i. Let Cn+1 be the group that a belongs to, and let C1; C2; � � � ; Cn be the

n groups that n segments in S respectively belong to.

ii. Create a new group Cn+2 such that Cn+2 = C1 [C2 [� � �Cn [Cn+1.

iii. Eliminate the groups C1; C2; � � �Cn+1 from further consideration.

Let us assume that, after the segments are grouped, we end up with m groups,

which we arbitrarily name as C1, C2, � � �, Cm by changing the indices.

Stage 2: Augmenting Groups into Subpresentations

Consider each group Ci, and create a graph Gi with the following nodes and edges

(1 � i � m):

1. Make a node for each segment in Ci and label it with the segment name.

2. For each organization constraint (as shown in Figure 2(i)) involving the seg-

ments in group Ci,

(A) if it is of type sequential(a, b) where a; b 2 Ci, add a directed edge from

node a to node b (i.e., a �! b) into the graph Gi.

(B) if it is of type split(a, S) where a 2 Ci and S � Ci, add directed edges from

node a to node si for each segment si 2 S (i.e., a �! si) into the graph Gi.

(C) if it is of type merge(S, a) where a 2 Ci and S � Ci , add directed edges

from node si to node a for each si 2 S (i.e., si �! a) into the graph Gi.

3. Determine the number of incoming and outgoing edges (i.e., incoming edge count

and outgoing edge count, respectively) for each node (i.e., segment) in Gi.

4. For all nodes v 2 Gi,

(A) if incoming edge count[v] = 0 then add a directed edge from the initial

node I to node v (i.e., I �! v) into the graph Gi.

(B) if outgoing edge count[v] = 0 then add a directed edge from node v to the

�nal node F (i.e., v �! F) into the graph Gi.

Nodes I and F represent the start and terminate nodes, respectively, for each

subpresentation. They both are empty (null) segments. After the augmentation,

we call each graph Gi a subpresentation.

Example: Using the above procedure, we form a unique subpresentation graph from

a given set of segments and organization constraints. Figure 2 depicts the way the

construction algorithm works.

A multimedia presentation can be described as a particular arrangement for

a collection of subpresentations. Each subpresentation Gi has a source (i.e., the

segment that is to be presented �rst which is I in our case) and a sink (i.e., the

segment that is to be presented last which is F in our case). Every node in a subp-

resentation is related to every other node through some speci�c temporal relation.

8

merge(a,b,c)
a

b

split(a,b,c)

sequential(a,b)

c

a
b

c

a b

SS={a,b,c,d,e,f}
(1)sequential(a,b)

(2)merge(c,d,e)

(3)split(b,c,d)

(4)sequential(e,f)

a b

c

d
e

b
c

d

e f

I a b

c

d

e f F

(i) (ii) (iii)

Figure 2. Relationship between Organization Constraints and Presentation Graph. (i)Simple

organization constraints and their transformations into graph components, (ii) a set of

constraints and the corresponding graph components, (iii) resulting presentation graph.

Each subpresentation has a length (i.e., the maximum of the sums of the lengths

of all segments on each path from the source to its sink) as well as a height (i.e.,

the maximum cut[16]) that is computed in a way that will be described shortly.

We will also use the notion of height at a point for a subpresentation. Notice that

I and F nodes are introduced in each subpresentation. To provide unique node

labels for a presentation graph constructed out of several subpresentations, we may

easily rename I and F nodes of each subpresentation with unique labels (i.e., new

indices). Yet these are the empty (null) nodes in the presentation graph. Thus,

each presentation graph can be made to have only one unique I (initial) node and

one unique F (�nal) node by introducing new indices.

Let Gi denote such a subpresentation for a presentation consisting of n subpresen-

tations, 1 � i � n. A particular arrangement for a collection of subpresentations

means that all Gi's are merged into a single connected (presentation) graph G

in such a way that (1) the user-speci�ed limit on the presentation length is not

exceeded, (2) the height of the resulting presentation is less than a user-speci�ed

height limit. As an illustration, the maximum number of video segments that are

presented in parallel must not exceed the available number of monitor windows

for video (speci�ed by the user). We use the term height to refer to the available

number of monitor windows for video. In other words, \joining" a set of Gi's into

a single directed graph means identifying the presentation organization constraints

among all the Gi's.

3. Presentation Organization

In this section we characterize presentation organization constraints and discuss

the presentation organization issues.

9

3.1. Presentation Organization Constraints

The purpose of presentation organization constraints is to automate the organi-

zation of a concurrent presentation containing the selected set SS of multimedia

segments (which already satisfy presentation inclusion and exclusion constraints).

We assume that presentation organization constraints are entered into the database

a priori by the database administrator.

To summarize, we use the following presentation organization constraints:

Sequentializer (SQ) constraint between segments a and b: In any presentation with

a and b, presentation of a is succeeded by the presentation of b.

Splitter (SP) constraint between segment a and segment set S: When a and any

subset S0 of S is in a presentation, the presentation of a is succeeded by a concurrent

presentation of all the segments of S0.

Merger (MG) constraint between segment a and segment set S: When a and

any subset S0 of S are in a presentation, after all segments in S0 are concurrently

presented, they are merged into a single stream, and a is presented.

3.2. Interpreting Presentation Organization Constraints

Sequential(a; b) is equivalent to \a meets b" [1] where a and b represent two time

intervals, and their relationship is that the interval b starts at the point where inter-

val a ends. Assuming that S is a nonempty set of segments, two other organization

constraints can be interpreted as follows: Split(a; S) is equivalent to \a meets si"

8si 2 S.

Consider the merger constraint merge(S; a). In one case, segment a can start right

after at least one of its immediate predecessors ends (i.e., at-least-one semantics).

We can, therefore, set the starting time of the segment a as the ending time of the

earliest ending predecessor segment. In another case, segment a can start only after

all of its immediate predecessors end (i.e., all semantics). For this semantics, we

have to set the starting time of the segment a as the maximum of the ending times

of all the segments that immediately precede the segment a.

For the merger constraint, we can express these two semantics as follows: Let a

be a segment, ST be the segment start time, and l be the playout duration of the

segment. Then, for all segments p, where p is an immediate predecessor of segment

a,

All Semantics:

ST (a) =

�
0 if a is a source

maxfST (p) + l(p)g otherwise
(1)

At-least-one Semantics:

ST (a) =

�
0 if a is a source

minfST (p) + l(p)g otherwise
(2)

10

a
2

f
1

e
61

dc
1

b
3

0 2 4 6 8 10

a

b

f

c d e

(i)

(ii) (iii)

ST:0

2
a

ST:2

c
1

ST:3 ST:4

ST:2

3
b

f

ST:10

1

d
1

e
6

2
a

ST:0

3

ST:2
b

ST:2

1
c

ST:3

1
d

ST:4

6
e

ST:5

1
f

Time 0 2 4 6 8

a

b

f

c d e

Time10

Figure 3. Computation of Segment Start Times Using Two Semantics of Organization

Constraints. (i) a presentation graph, (ii) The same presentation graph with segment start

times(ST) using the all semantics, (iii)The same presentation graph with segment start

times(ST) using the at-least-one semantics

Example: Using the semantics de�ned above, we can compute the start times (ST)

of segments in the presentation graph as shown in Figure 3(i). The playout duration

l of each node's segment is indicated in the lower-right corner of the corresponding

node.

Using the all semantics, the upper graph in Figure 3(ii) shows the presentation

graph of Figure 3(i) with the computed start times for the playout of each segment.

The lower part of Figure 3(ii) shows the playout times of segments using a timeline

diagram.

Using the at-least-one semantics, the upper graph in Figure 3(iii) shows the pre-

sentation graph of Figure 3(i) with the computed start time for the playout of each

segment. The lower diagram of Figure 3(iii) shows the playout times of segments

using a timeline diagram.

Note that there exists an anomaly for at-least-one semantics in the timeline di-

agram of Figure 3(iii): Even though the node f is designated as the �nal node in

the presentation graph, it ends much earlier than one of its predecessors, namely,

the segment e. Because of this anomaly, we use the all-semantics for the merger

constraint in our examples in the rest of the paper.

3.3. Controlling the Length and Height of a Presentation

We call the set OC of presentation organization constraints a cover if a unique

presentation is obtained by enforcing the constraints in the set OC. Assume that

11

a set of presentation organization constraints is a cover for a given collection of

multimedia segments. In this case, the task of forming a presentation is straight-

forward. After forming a presentation graph as described earlier, we use it to �nd

the longest path from the initial node I to the �nal node F . The longest path

gives us the length of the presentation. To satisfy the user-speci�ed presentation

length limit, the only thing that needs to be done is to check whether or not the

user-speci�ed length exceeds the computed presentation length.

As for the height computation, a simple algorithm that is presented in the next

subsection can be used on the presentation graph. This algorithm �nds the number

of streams that need to be presented in parallel. As the number of parallel streams

played out vary with time, we are only interested in the maximum number. By

applying the algorithm between the start and end points of the presentation, we

obtain a set of numbers, the maximum of which gives us the height of the presen-

tation (i.e., the maximum number of monitor windows required to play out this

presentation). We then check whether or not the user-speci�ed height exceeds the

computed presentation height.

However, the assumption of having presentation organization constraints forming

a cover, and thus, leading to a unique presentation graph usually does not hold for

real-world applications. In this case, there is at least one segment a that can be

played out in parallel or sequentially with some other segment c without violating

any presentation organization constraint in the set.

3.4. Computing the Height of a Presentation

Given a subpresentation with a presentation graph, what is the maximum number

of parallel windows needed for playing the video segments in the subpresentation?

This problem is identical to �nding the maximum \cut" in a given temporally-

aligned graph. Therefore, the maximum cut corresponds to the height of the pre-

sentation. We give the following simple algorithm for this purpose.

Call the start and the end of each segment in a subpresentation as the start and

end event or simply \event". Assuming that there are n segments in a subpresen-

tation, the total number of events is 2n. Events occur at speci�c time points which

are called event points. The total number of event points can be fewer than the

total number of events since multiple events may occur at the same event point.

Therefore, the total number of event points is at most 2n.

Since event points are time values (i.e., positive numbers), they can be ordered in

increasing/decreasing order. Let m denote the total number of event points, where

m � 2n, and Event i denote the group of events that occur at the ith event point,

1 � i � m.

Height at a point, height of a subpresentation at any point in time (i.e., say, at

time d) equals the height between event points for Event j and Event j + 1 where

(1) event point for Event j � d, and (2) there does not exist an Event i such that

event point for Event j < event point for Event i � d, and (3) j < m. This is true

12

0 1 2 3 4 5 Time

a
b

c

d

e

g

f

h

height(max. cut)=3

Figure 4. A Timeline Diagram Showing the Event Points of a Subpresentation Graph

because no new edge appears in the presentation graph between two consecutive

event points.

Formally, an Event will be characterized by [E; S; T] where E is the event point

(i.e., a positive number), S is the set of segments that start at E, T is the set of

segments that end at E. After ordering the events in increasing event point order,

we denote each event with an index [E; S; T]i for the i
th event, i � m, or an element

of an event i as Ei, Si, or Ti. For a subpresentation graph, since all the segments

that start will eventually end, the following holds:

mX
i=1

j Si j=

mX
i=1

j Ti j (3)

The height between any two consecutive event points (Ek and Ek+1, k < m) for a

subpresentation is expressed by :

kX
i=1

j Si j �

kX
i=1

j Ti j (4)

Example: Figure 4 depicts the segment playout behavior using a timeline diagram

for a subpresentation graph. Using the notations introduced so far, the following

events characterize this subpresentation (n=8; m=6):

Event 1 : [0, fag, fg]

Event 2 : [1, fb,cg, fag]

Event 3 : [2, fd,eg, fbg]

Event 4 : [3, fg,fg, fc,dg]

Event 5 : [4, fhg, fg,eg]

Event 6 : [5, fg, fh,fg]
The heights between two consecutive event points for this subpresentation graph

are computed as follows:

interval [0; 1) = 1� 0 = 1;

interval [1; 2) = 3� 1 = 2;

interval [2; 3) = 5� 2 = 3;

interval [3; 4) = 7� 4 = 3;

interval [4; 5) = 8� 6 = 2;

interval [5;1) = 8� 8 = 0;
Thus, the height of this subpresentation is 3.

4. Problem De�nition

Recall that the subpresentations are G1; G2; � � � ; Gn.

13

First, let us de�ne what we mean by the term arrangement: An arrangement of

subpresentations means that each subpresentation Gj is connected to some other

subpresentation(s) Gi and Gk without forming a cyclic graph in such a way that

(1) the source node of Gj is an immediate successor of the sink node of Gi or the

initial node I, (2) the sink node of Gj is an immediate predecessor of the source

node of Gk or the �nal node F . Recall that I and F nodes in subpresentations can

be renamed (with new indices) so that nodes in the resulting presentation graph

has unique labels.

De�nition. Presentation Organization Problem (POP):

Instance : Given (1) a set P of n subpresentations (G1; G2; � � � ; Gn) each of which

with a height and a length denoted by h(Gi) and l(Gi) for 1 � i � n, respectively,

(2) a positive number, Length � 0, and (3) a positive integer, Height � 0,

Question : Does there exist an arrangement M for P such that (1) length(M) �

Length, and (2) height(M) � Height?

We will consider a simpli�ed version of the POP problem, called S POP , where

all the subpresentations are of equal length (i.e., l(Gi) = c; 8Gi 2 P and c is a

constant).

To determine the complexity of S POP problem, we consider the following known

NP-complete problem Bin Packing and �nd a polynomial time reduction from Bin

Packing to S POP.

De�nition. Bin Packing Problem:

Instance : Given (1) a �nite set U of items, a size s(u) 2 Z+ for each u 2 U , (2) a

positive integer bin capacity B, and (3) a positive integer K,

Question : Is there a partition of U into disjoint sets U1; U2; � � � ; UK such that the

sum of the sizes of the items in each Ui is B or less?

Theorem 1 S POP is NP-hard.

Proof: We give the following transformation (reduction) from Bin Packing to

S POP:

The set U of items in Bin Packing is the same as the set P of subpresentations

in S POP. Each item has a size s(u)8u 2 U in Bin Packing, while in S POP

each subpresentation has a height h(Gi); 8Gi 2 P . The bin capacity B of Bin

Packing corresponds to the user-speci�ed Height in S POP. The number of bins,

K, transforms to the number of intervals, N , each of which has a length 'c`. Overall,

the total length of all the intervals is determined as cN , which is the user-speci�ed

Length in S POP.

Now the question in Bin Packing becomes as:

Is there a partition of P into disjoint intervals I1; I2; � � � ; IN , (each with a length c,

thus the overall length cN) such that the sum of the heights of the subpresentations

in each interval Ii is less than or equal to Height?

A \yes" answer to Bin Packing requires a \yes" answer to S POP, and a \no"

answer to Bin Packing requires a \no" answer to S POP. It is obvious that the

given transformation is polynomial.

14

As a consequence of the theorem, we no longer focus on �nding an optimal solution

to the POP problem, but instead attempt to �nd a \good" heuristic solution. The

methods used for designing such algorithms tend to be problem speci�c [4, 8]. Two

heuristics based on a combination of empirical studies and common-sense arguments

are given next.

4.1. Heuristic 1 : Maximum Parallelism

This heuristic attempts to �nd the shortest-length presentation that satis�es all the

organization constraints (i.e., note that subpresentations are constructed to satisfy

the given set of presentation organization constraints), the user-speci�ed limits on

the presentation length and presentation height.

The length of a presentation is at least the maximum of the lengths of its subpre-

sentations because, in one extreme case, all the subpresentations will be played out

in parallel and the subpresentation with the maximum length will determine the

length of the presentation. However, a parallel playout of all the subpresentations

may not satisfy the user-speci�ed height limit. Therefore, some of the subpresen-

tations may need to be organized back-to-back (i.e., sequential). Heuristic1 �rst

sets the presentation height with the user-speci�ed UHeight and then tries to form

a presentation with the minimumpossible length still satisfying the POP problem.

To do so, a subset of subpresentations are selected and linked together without

exceeding the user-speci�ed height and length limits. If the length limit is not ex-

ceeded and all the subpresentations are linked together, then the algorithm �nds a

presentation and declares \success". However, if there are subpresentations which

are not linked yet, and the length limit ULength is not exceeded by the current

length, then the length is incremented by a certain amount and the same process

is repeated. In case the length is incremented above a threshold value, ULength,

then the algorithm cannot �nd a presentation and declares \failure". The pseudo

code of the Heuristic1 is shown below:

1. Algorithm Heuristic1(UHeight, ULength, P):

2. Input:

3. UHeight, ULength: User-speci�ed Height and Length bounds

4. P: set of subpresentations G1; G2; � � � ; Gn

5. each of which is given with h(Gi) and l(Gi)

6. Output:

7. success/failure in forming a presentation

8. Body:

9. X := Policy1;

10. TLength := 0; /* tentative length */

11. Remain := P; /* set of unrelated Gi's */

12. Pred := fIg; Presentation := fIg;

15

13. /* I is the initial, F the �nal node */

14. while Remain is nonempty do begin

15. Choose (wrt X) a subset R of Remain such that

16.
P

Gi2R
h(Gi) � UHeight;

17. TLength := TLength + maxfl(Gi); 8Gi 2 Rg;

18. if TLength>ULength then begin

19. TLength := 0; Remain := P;

20. Pred := fIg; Presentation := fIg;

21. switch(X)

22. case Policy1: X := Policy2;

23. case Policy2: X := Policy3;

24. case Policy3: Exit with failure;

25. end

26. else begin

27. Remain := Remain - R;

28. Add R into Presentation by making every subpresentation in

29. Pred(ie, most recently added subpresentations) an immediate

30. predecessor of each subpresentation in R;

31. Pred := R;

32. end

33. endwhile

34. Add fFg into Presentation by making it an immediate successor of every

35. Gi in Pred;

36. Return success with Presentation;

At each iteration within the while loop, choosing a subset of subpresentations can

be performed in many di�erent ways. Currently, we have three policies:

� Policy1 : Choose the subpresentations with \small" heights, the summation of

which must not exceed the prespeci�ed height.

� Policy2 : First choose subpresentations with \large" heights, the summation of

which must not exceed the prespeci�ed height. Then choose subpresentations

with \small" heights, where the total height is less than Uheight.It is possible

that we can still �t more subpresentations with small heights into the presen-

tation without exceeding the prespeci�ed height. Therefore, in this policy, we

add into the presentation subpresentations with large heights �rst, and then

subpresentations with small heights.

� Policy3 : Choose subpresentations in random.

16

4.2. Heuristic 2 : Steady Flow

This heuristic attempts to �nd the lowest-height presentation that satis�es all the

organization constraints, the user-speci�ed limits on the presentation length and

the presentation height.

The height of a presentation is at least the maximum of the heights of its subpre-

sentations because, in one extreme case, all of the subpresentations will be played

out sequentially and the subpresentation with the maximum height will determine

the height of the presentation. However, a sequential playout of subpresentations

may not satisfy the user-speci�ed length limit. Therefore, Heuristic2 �rst tries

to form a presentation with the minimum possible height still satisfying the POP

problem. To do so, it sets the tentative presentation height with the maximum

of the heights of subpresentations. Afterwards, the subpresentations are selected

and linked together incrementally without exceeding the user-speci�ed height or

length limits. If the length limit is not exceeded and all the subpresentations are

linked together, then the algorithm succeeds in �nding a presentation and declares

\success". However, if the length limit is exceeded, then the tentative height is

incremented by a certain amount, delta, and the same process is repeated. In case

the tentative height is incremented above a threshold value, UHeight, then the al-

gorithm cannot �nd a presentation and declares \failure". Note that this heuristic

does not exclude the parallel arrangement of subpresentations. Therefore, some of

the subpresentations may need to be organized in parallel. The pseudo code of the

Heuristic2 is given below:

1. Algorithm Heuristic2(UHeight,ULength,P,delta):

2. Input:

3. delta: the amount of increment

4. UHeight, ULength: User-Speci�ed Height and Length bounds

5. P: set of subpresentations G1; G2; � � � ; Gn,

6. each of which is given with h(Gi) and l(Gi)

7. Output:

8. success/failure in forming a presentation

9. Body:

10. X := Policy1;

11. THeight:= maxfh(Gi); 8Gi 2 Pg; TLength := 0;

12. /* tentative height and tentative length */

13. Remain := P; /* set of unrelated Gi's */

14. Presentation := fIg; Pred := fIg;

15. /* I is the initial, F the �nal node */

16. while Remain is nonempty do begin

17. Choose (wrt X) a subset R of Remain such that

18.
P

Gi2R
h(Gi) � THeight;

17

19. TLength := TLength + maxfl(Gi); 8Gi 2 Rg

20. if (TLength > ULength) then

21. if (THeight � UHeight) then begin

22. THeight := maxfh(Gi); 8Gi 2 Pg;

23. TLength := 0; Remain := P;

24. Pred := fIg; Presentation := fIg;

25. switch(X)

26. Policy1: X:= Policy2;

27. Policy2: X:= Policy3;

28. Policy3: Exit with failure;

29. end

30. else begin

31. THeight:= minfUHeight, THeight+deltag;

32. TLength:= 0; Remain:= P;

33. Presentation:= fIg; Pred:= fIg;

34. end

35. else begin

36. Remain := Remain - R;

37. Add R into Presentation by making every subpresentation in

38. Pred(ie, most recently added subpresentations) an immediate

39. predecessor of each subpresentation in R;

40. Pred := R;

41. end

42. endwhile

43. Add fFg into Presentation by making it an immediate successor of every

44. Gi in Pred;

45. Return success with Presentation;

4.3. Empirical Evaluation of Heuristic1 and Heuristic2

What does the Implementation do: User speci�es

(1) the desired presentation height, UHeight,

(2) the desired presentation length, ULength,

(3) number N of subpresentations to organize.

After these speci�cations are given, we do the following (in certain number of

times.)

(i) a new seed value is determined for the random-number generator,

(ii) using the random-number generator, the N subpresentations are generated.

18

{the heights of the subpresentations are obtained from a uniform distribution in

the range of (1..6).

{the lengths of the subpresentations are obtained from a uniform distribution in

the range of (1..10).

(iii) subpresentations are ordered with respect to their heights. Now the Algorithms

Heuristic1 and Heuristic2 can be applied on these subpresentations.

How the Heuristics work:

Heuristic1 :

For speci�ed height,

(1) tries to �nd a presentation using policy 1,

If it succeeds, then exits with the presentation, otherwise

(2) tries to �nd a presentation using policy 2,

If it succeeds, then exits with the presentation, otherwise

(3) tries to �nd a presentation using policy 3, If it succeeds, then exits with the

presentation, otherwise declares \failure".

Heuristic2 :

Same as the Heuristic1 except for the fact that Heuristic2 tries to �nd a \steady-

ow" presentation.

What can we measure: To better understand the working principles of two

heuristics and to see the e�ects of the user-de�ned parameters on each of them, we

have performed a number of tests by simulating these two algorithms. In our simu-

lation environment, the selected set of segments1 for presentation are assumed to be

grouped and augmented to 20 subpresentations according to the method described

in section 2:1. Heights and lengths of subpresentations are obtained from a uniform

distribution between (1..6) and (1..10), respectively. For each set of input parame-

ters supplied by the user, we generate 1000 sets of these subpresentations and, for

each set, try to form a presentation graph conforming to the user-constraints.

5. Presentation Playout

After a presentation is assembled which satis�es all the given presentation orga-

nization constraints, user-speci�ed length and height limits on the presentation

height and length, we now discuss dynamic playout control issues in an automated

multimedia presentation environment.

19

Table 1. Number of times Heuristic1 forms a presentation(out of 1000 sets).

hts:len 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

6 0 0 0 0 8 24 58 132 261 413 576 724 855 929 973 991 998 999

7 0 0 0 0 19 53 126 278 453 636 785 889 949 980 993 998 999 All

8 0 0 3 15 52 136 315 517 709 869 937 972 993 998 All All All All

9 0 0 6 46 140 334 540 750 894 963 989 996 All All All All All All

10 0 2 28 107 286 543 766 908 982 995 998 All All All All All All All

11 0 14 64 192 463 737 904 980 998 999 All All All All All All All All

12 3 35 138 382 671 894 978 997 All All All All All All All All All All

13 7 62 220 528 802 953 994 998 All All All All All All All All All All

14 20 102 353 683 913 980 998 999 All All All All All All All All All All

15 38 179 504 828 966 996 All All All All All All All All All All All All

16 68 286 651 919 983 999 All All All All All All All All All All All All

17 114 430 765 963 996 999 All All All All All All All All All All All All

18 165 555 867 982 All All All All All All All All All All All All All All

19 229 673 933 992 All All All All All All All All All All All All All All

20 319 768 973 995 All All All All All All All All All All All All All All

21 429 846 989 997 All All All All All All All All All All All All All All

22 547 886 997 999 All All All All All All All All All All All All All All

23 675 922 All All All All All All All All All All All All All All All All

24 770 957 All All All All All All All All All All All All All All All All

25 866 975 All All All All All All All All All All All All All All All All

26 922 991 All All All All All All All All All All All All All All All All

27 957 995 All All All All All All All All All All All All All All All All

28 986 997 All All All All All All All All All All All All All All All All

29 992 999 All All All All All All All All All All All All All All All All

30 999 All All All All All All All All All All All All All All All All All

20

5.1. Generation, Start, and Termination of Playout Agents

In order to describe the design of generic policies for a multimedia playout system

in terms of timing parameters (of a real-time system [2, 9, 20], we �rst discuss our

playout model and its characteristics.

We associate a playout agent(PA) to each segment to be presented. A PA is

a schedulable entity (i.e., a lightweight process) within the operating system and

responsible for playing out the associated segment. Segments are played out at

appropriate times on speci�c types of output devices depending on the segment's

media type. The following parameters describe the characteristics of a PA:

� An arrival time (denoted by ai for PA segment i), at which the correspond-

ing segment has been fetched from its source and brought to the presentation

playout site.

� An earliest start time (denoted by ri for PA for segment i), the PA can start

playing out segment i anytime after ri.

� An actual start time (denoted by pi for PA for segment i) at which the PA

starts playing out the segment i.

� A playout duration (denoted by xi for PA for segment i), during which the PA

continuously playout the segment i.

� A deadline (denoted by di for PA for segment i), by which the PA is expected

to complete its playout of the segment.

� An actual �nish time (denoted by fi for PA for segment i), at which the PA

completes playing out the segment i.

Using the notation introduced in section 3:4, we give, in Table 2, our �rst playout

algorithm.

A PA associated with any segment a has the following pseudo code:

WaitforSV(aST);

Present segment a on its output device in time xa;

SignalSV(aT);

WaitforSV and SignalSV are binary semaphore primitives for synchronization

purposes[17, 21, 22]. Concurrent activities typically require synchronization points

so that the slow activities can catch up the faster ones, or the fast activities are

slowed down to let the other not-so-fast activities to come close and meet them

at these points. Each synchronization point is represented as a synchronization

variable or SV (i.e., a binary semaphore). Such a variable, if set, indicates that

the synchronization point has been reached, if unset, then this point has not been

reached. For each segment a, we create two unique SV s, one for the start (aST)

and one for the terminate (aT) both are unset, initially. The following primitive

21

Table 2. First Playout Algorithm.

1. Order the events in the presentation in increasing order in event points.

2. Consider each event (in order) with event point Ei

(A) For each segment v in Ti,

Terminate the PA for v;

SignalSV(vT);

(B) For each segment u in Si,

SignalSV(uST);

Start the PA for u;

(C) Wait until the next event point Ei+1.

Table 3. Speci�cation of �rst playout algorithm in terms of timing parameters.

Parm. setting Meaning

ai = 0; All the segments are ready at the beginning at presentation playout site.

pi = ri; All the PAs start playing out their segments at the earliest start time.

di=ri + xi; All PAs must complete playing out their segments in xi units of time.

fi = di; All the PAs complete playing out their segments at speci�ed deadline.

operations are used on these variables: WaitforSV(SVExpr): to wait for the expres-

sion to become true. SignalSV(SV): to set the synchronization variable SV .

SV is a single synchronization variable and SV Expr is an expression involving any

number of SV s separated by and operator. At the beginning, all SV s are unset.

A presentation playout session starts with SignalSV(IST). Using the parameters

describing the characteristics of PAs, this playout algorithm can be expressed as

in Table 3.

Notice that this algorithm is static, meaning that the behavior is predetermined.

However, due to the media-related processing (for example, fetching, uncompressing

or decoding very large video (MPEG) or audio �les), or the heavy workload, CPU

time is consumed. As a result, there will be delays in scheduling the PAs. The net

e�ect is (1) information loss by skipping some frames, or (2) drop in frame rate,

etc. To prevent such cases, we propose, in Table 4, a dynamic, on-line playout

algorithm:

Example: Using the subpresentation graph shown in Figure 5, we can easily mod-

ify the PAs so that a complete synchronization of the playout activities is achieved.

22

Table 4. Second Playout Algorithm.

1. For each node v in the presentation graph, create two synchronization variables, one

for start(vST) and one for terminate(vT).

2. Generate a PA with the following (pseudo)code for each segment a:

WaitforSV(aST);

Present segment a on its output device;

SignalSV(aT);

3. For each organization constraint (i.e, observed in the presentation graph),

(A) if it is Sequential(a,b), add SignalSV(bST) at the end of PA for a.

(B) if it is Split(a,b,c), add SignalSV(bST) and SignalSV(cST) (in this order) at the

end of PA for a.

(C) if it is Merge(b,c,d), add WaitforSV(bT and cT) and SignalSV(dST) (in this order)

at the beginning of PA for d.

(1) Sequential(I,b)

(2) Split(b,c,d)

(3) Merge(c,d,e)

(4) Sequential(e,F)

I b

c

d

e F

Figure 5. A Subpresentation Graph constructed out of constraints (1) to (4)

23

Table 5. Speci�cation of second playout algorithm in terms of timing parameters.

Parm. setting Meaning

ai = 0 All the segments are ready at the beginning at presentation playout site.

pi = ri � Di1 All PAs start playing out their segments in close range of their release times.

di = ri + xi �Di2 All PAs can complete playing out their segments in the range of time xi

fi = di �Di3 All PAs complete playing out their segments in the range of their deadlines.

PA for I:

WaitforSV(IST);

present I;

SignalSV(IT);

SignalSV(bST);by (1)

PA for b:

WaitforSV(bST);

present b;

SignalSV(bT);

SignalSV(cST);by (2)

SignalSV(dST);by (2)

PA for c:

WaitforSV(cST);

present c;

SignalSV(cT);

PA for d:

WaitforSV(dST);

present d;

SignalSV(dT);

PA for e:

WaitforSV(cT and dT);by (3)

SignalSV(eST);by (3)

WaitforSV(eST);

present e;

SignalSV(eT);

SignalSV(FST);by (4)

PA for F:

WaitforSV(FST);

present F;

SignalSV(FT);

A presentation playout session starts with SignalSV(IST). In terms of character-

istic timing parameters, this algorithm can be expressed as in Table 5.

By looking at the values of Di1, Di2 and Di3, one can study/observe the sys-

tem characteristics in terms of where and how much delays/speedups occur in a

presentation playout.

5.2. Execution-Time User Control During the Playout

To allow interactive user controls during the playout of an automatically generated

presentation, an arbitrary number of (keyboard) buttons are reserved for the user

interaction. Through these buttons, the user is able to change/a�ect the
ow of

the presentation in certain ways. The following examples illustrate such a control

mechanism.

24

Example: 1. Pressing the function key F1 and entering the value y has the e�ect

that all streams are frozen for y seconds.

2. Pressing the function key F2 and entering the value y has the e�ect that the

speci�ed streams are frozen for y seconds.

3. Pressing the function key F3 and entering the value x has the e�ect that, for

the rest of the presentation, the maximumnumber of concurrent windows must

be equal to x.

4. Pressing the function key F4 and entering the value x has the e�ect that, for

the rest of the presentation, the minimum number of concurrent windows must

be equal to x.

5. Pressing the function key F5 and entering the value y and object id of the

content-object o has the e�ect that any stream containing a representative frame

with content-object o is frozen for y seconds.

6. Pressing the function key F6 has the e�ect that all streams that are currently

being played out are frozen until the ContinueButton is pressed.

7. Pressing the function key F7 and pointing and clicking a number of streams

has the e�ect that the speci�ed streams are frozen until the ContinueButton

is pressed.

8. Pressing the function key F8 and entering the object id of the content-object

o has the e�ect that any stream containing a representative frame with the

content-object o is frozen until the ContinueButton is pressed.

All of these user controls can be modeled with the event-action paradigm of active

databases[13, 20]. In general, e =) A indicates that whenever the event e occurs,

the action A must be taken. In all of the above examples, pressing a keyboard

function key corresponds to an event, and its requested e�ect corresponds to the

action taken by the presentation manager.

Eventa : Press function key F1 and enter value y.

Actiona : Freeze all streams for y seconds.

Eventb : Press the function key F6.

Actionb : Freeze all streams until the ContinueButton is pressed.

The overall meaning of these two events and actions are the same for our model:

upon the occurrence of either of these two events, the presentation pauses for d

time units, where d equals either y or the time duration between the occurrence of

the event and the pressing of the ContinueButton. Figure 6 shows the signi�cant

points on a timeline during a presentation playout. Signi�cant points are described

below:

25

T
start

T
freeze

T
unfreeze

T
computed

T
user

Time

d e

Figure 6. Signi�cant time points during a presentation playout

Tstart is the time point at which the playout of the presentation starts. Tfreeze
is the time point at which Eventa or Eventb occurs. Tunfreeze is the time point

at which the playout of the presentation resumes. Tcomputed is the time point at

which the playout of the presentation is supposed to end. Tuser is the time point

corresponding to the user-speci�ed presentation length, ULength.

To analyze the incorporation of such event-action rules into our automated pre-

sentation organization model, we classify the segments of a multimedia presentation

during a presentation playout into three groups: (i) Group D of segments that are

already presented (i.e., Done), (ii) Group C of segments that are currently playing

(i.e., Currently playing), (iii) Group Y of segments that are yet to play (i.e., Yet

to play). For their incorporation, we create a new initial node I and make it an

immediate predecessor of each segment in C (i.e. node that is labeled with the

segment name) and the playout resumes with the newly added node I.

To determine whether we need a reorganization of the remaining portion of the

presentation, we �rst compute the quantities d (i.e., Tunfreeze-Tfreeze) and e (i.e.,

Tuser-Tcomputed). Moreover, we �nd out the value of rollback=maxflength(mi),

8mi 2 Cg, since we may have to \rollback" the playout at most rollback units

to go back to the beginning of the segments that were playing at the time of the

occurrence of the freeze event. The overall delay caused by this event is at most

d + rollback. Therefore, if d + rollback � e, then no reorganization is needed.

Otherwise, one has to do an incremental reorganization. This issue is currently

being researched.

6. Conclusion and Future Work

In this paper, we have introduced a constraint-driven methodology for the auto-

mated assembly, organization and playout of presentations frommultimediadatabases.

It is shown that the presentation organization problem is nontrivial. If the speci�ed

set of organization constraints are not su�cient to construct a unique presentation

graph, we propose heuristic techniques so that a unique graph is constructible.

After a presentation graph is constructed, we propose two playout management

techniques, one for the generation, start and termination of playout agents, the

other to provide dynamic (playout-time) controls for playout management. The

playout characteristics are expressed in terms of presentation playout parameters.

We are currently implementing a prototype system to observe/understand the

playout characteristics by experimenting with the timing parameters, which we in-

26

tend to use in a multimedia presentation system. For the time being, a single host

site is responsible for (1) the selection of presentation contents, (2) organizing the

selected contents into a presentation, and (3) playing out the presentation to the

user. As a future step, we plan to extend this work into a distributed environ-

ment, where the multimedia data (i.e., segments) and related constraints reside on

a server site and the tasks related to selection and organization of contents into

a presentation are carried out by local hosts (clients). The server is responsible

for providing the clients with the available metadata (i.e., inclusion/exclusion con-

straints, set of multimedia segments, and organization constraints) of a particular

subject in multimedia upon a client's request as well as feeding the clients with the

contents of the presentation (i.e., the set of selected segments). We think that these

extensions are easier due to the use of open system concepts2 in most of our design

decisions.

Acknowledgments

We would like to thank...

Notes

1. How the segments are selected is explained in our previous work.

2. An open system is the one that can be incrementally extended with the addition of new

functionality without disturbing the existing system components.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26:832{843, November 1983.

2. N. Audsley and A. Burns. Real-time system scheduling. Technical Report YOR 134, Uni-

versity of York, Department of Computer Science, 1990.

3. D. Bordwell and K. Thompson. Film Art An Introduction. McGraw-Hill Inc., 4 edition,

1993.

4. Thomas H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT

Press, 1990.

5. Roger B. Dannenberg, Tom Neuendor�er, J. M. Newcomer, Dean Rubine, and David B.

Anderson. Tactus: toolkit-level support for synchronized interactivemultimedia.Multimedia

Systems, 1:77{86, 1993.

6. G. Davenport, T.A. Smith, and N. Pincever. Cinematic primitives for multimedia. IEEE

Computer Graphics & Applications, pages 67{74, July 1991.

7. D. Le Gall. Mpeg: A video compression standard for multimedia applications. Communica-

tions of the ACM, 34(4):46{58, April 1991.

8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.

9. Marc H. Graham. Issues in real-time data management. Real-Time Systems, 4(3):185{202,

September 1992.

27

10. Veli Hakkoymaz and G. Ozsoyoglu. Automated assembly, organization and playout of multi-

media presentations as a constraint-driven approach. Technical report, Case Western Reserve

University, 1996. in preparation.

11. Petra Hoepner. Presentation scheduling of multimedia objects and its impact on network

and operating system support. In Network and Operating System Support for Digital Audio

and Video, 1991.

12. Petra Hoepner. Synchronizing the presentation of multimedia objects-oda extension. ACM

SIGOIS Bulletin, 12(1):19{32, July 1991.

13. Huang-Cheng Kuo and Gultekin Ozsoyoglu. A framework for cooperative real-time transac-

tions. In Proceedings of The First International Workshop on Real-Time Databases: Issues

and Applications, March 1996.

14. T. D. C. Little. A framework for synchronous delivery of time-dependent multimedia data.

Multimedia Systems, 1:87{94, 1993.

15. T.D.C. Little and A. Ghafoor. Interval-based conceptual models for time-dependent multi-

media data. IEEE Trans. on Knowledge and Data Engineering, 5(4), August 1993.

16. C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.

17. C. Nicolaou. An architecturefor real-timemultimedia communication systems. IEEE Journal

on Selected Areas in Communications, 8(3):391{400, April 1990.

18. G. Ozsoyoglu, V. Hakkoymaz, and J. Kraft. Automating the assembly of presentations from

multimedia databases. IEEE Int. Conf. on Data Engineering, February 1996.

19. N.U. Qazi, Miae Woo, and Arif Ghafoor. A synchronization and communication model for

distributed multimedia objects. ACM Multimedia, June 1993.

20. Krithi Ramamritham.Real-timedatabases. International Journal of Distributed and Parallel

Databases, 1992.

21. A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts. Addison-Wesley

Publishing Company, third edition, 1991.

22. Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

23. Je�rey D. Ullman. Database and Knowledge-Base Systems, volume I. Computer Science

Press, 1988.

24. Taieb Znati and Brian Field. A network level channel abstraction for multimedia commu-

nication in real-time networks. IEEE Transactions on Knowledge and Data Engineering,

5(4):590{599, August 1993.

Received Date

Accepted Date

Final Manuscript Date

