5, 127 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Automating the Organization of Presentations for
Playout Management in Multimedia Databases

VELI HAKKOYMAZ veli@ces.cwru.edu
GULTEKIN OZ50YOGLU tekin@ces.cwru.edu

Department of Computer Engineering and Science, Case Western Reserve University, Cleveland,

OH J4106 USA

Received May 1, 1991
Editor:

Abstract. We introduce a constraint-driven methodology for the automated assembly, organi-
zation and playout of presentations from multimedia databases. We use inclusion and exclusion
constraints for extracting a semantically coherent set of multimedia segments. Presentation or-
ganization constraints are utilized for organizing the multimedia segments into a presentation,
which in turn helps decide the playout order of the extracted multimedia segments. The playout
order of the segments is represented in a presentation graph. If the specified set of organization
constraints are not sufficient to construct a unique presentation graph, we propose two techniques
so that a unique graph is constructible. We also propose two playout algorithms, one for the
generation, start and termination of playout agents, the other for dynamic control of playout
management on organized presentations. The characteristics of these algorithms are expressed in
terms of presentation playout parameters.

Keywords: Multimedia Presentation, Presentation Organization, Playout Synchronization, Syn-
chronized Presentation, Multimedia Databases

1. Introduction

In multimedia computing research, organizing various multimedia segments for a
semantically coherent presentation, without any regard to the multimedia database
that contains these segments, is an active research area under the title of presen-
tation managers. Multimedia computing integrates different media types such as
audio, video, text, and graphic images. Each medium can be modeled as a stream
[12, 7, 6, 3, 18] which can be broken into a sequence of segments. A multimedia
presentation refers to the presentation of multimedia segments using a number of
output devices such as speakers for audio, monitors for text and video and so on.
In this paper, we discuss the issues involved in automatically organizing presen-
tations from multimedia databases. In particular, we introduce a methodology to
automate the organization and playout of multimedia presentations.

The organization of presentations is a complex task in that the display order of
presentation contents (in time and space) must be specified. Suppose that an edu-
cation technologist is developing a presentation called Training that contains audio,
video, and text media types. The critical decisions for presentation construction

include (1) what the contents are, and (2) how the contents are organized (i.e., some
parts of audio and video may be temporally related and have to be presented in
parallel; some other parts can only be presented after certain subjects are covered,
etc). Once the decision is made on the organization of the contents of the presen-
tation, it must be conveyed to the end user in the correct organizational order and
in a timely fashion.

In this research, we consider an environment where users request multimedia pre-
sentations of a fixed time length. For example, a user may request a one-hour long
audio-video summary of a presentation about the programming language Ct+. We
also envision that the user (in some way) can specify the maximum number of
monitor windows which can be open simultaneously for the presentation of parallel
streams. Such a process can have multiple interactions between a user and the
presentation system. For example, the system may respond to a user request by
saying that the requested presentation cannot be performed in one hour if it is to
be presented using the specified number of parallel windows. To automate the con-
struction and playout of presentations, we propose a “constraint-driven approach”.
More specifically, we utilize

e nclusion and exclusion constraints for extracting a semantically coherent set of
multimedia segments from the multimedia database,

e presentation organization constraints for organizing and deciding the playout
order of the extracted multimedia segments,

e playout-control constraints in order to provide dynamic, playout-time controls
for end users, and

e physical-playout constraints for helping to ensure a jitter- or hiccup-free playout
of multimedia data.

We use inclusion and exclusion constraints between segments to facilitate the
automated inclusion or exclusion of segments into a presentation. Consider an edu-
cational math lecture in video. In any presentation that contains a video sequence
Proof illustrating the proof of a theorem, another video sequence Thm that defines
the theorem should also be included. This is an inclusion requirement of Thm based
on the included segment Proof. However, it is clear that Thm can be included in
a presentation without including Proof. To summarize, when a user specifies (by
pointing and clicking) a set of segments for a presentation, the DBM S, by using
inclusion and exclusion constraints, adds segments into and/or deletes segments
from the set in order to satisfy the inclusion and exclusion constraints. In a recent
work[18] we have characterized inclusion and exclusion dependencies, axiomatized
a subset, given two algorithms for automated presentation assembly, and discussed
their complexity.

Presentation organization constraints allow the system to automate the organiza-
tion of concurrent presentations of selected segments (that already satisfy inclusion
and exclusion constraints). We assume that presentation organization constraints

are entered into the database a priori by the database administrator, and, for any set
of user-selected segments, the satisfaction of presentation organization constraints
leads to an organized presentation. Consider the educational math video example.
The video sequence Proof must be preceded (but not necessarily immediately) by
another video sequence, say Thm, that defines the theorem. This is a sequentializer
constraint for a presentation that contains Thm and Proof (as Thm should pre-
cede Proof). In this paper, we discuss how to organize a concurrent presentation
(represented by a “presentation graph”) by utilizing the presentation organization
constraints. We assume that the database contains various presentation organiza-
tion constraints. Users express a presentation organization query by specifying (a)
an upper bound on the time length of the presentation, (b) an upper bound on
the number of parallel monitor windows (for video playout) open at any time, (¢)
a set of selected segments (which are expanded, if necessary, into a set of “coher-
ent” segments by utilizing inclusion and exclusion constraints and the algorithms of
our earlier work [18]). Note that the requirement (b) specifies the maximum level
of concurrency (i.e., the number of concurrently played-out video segments) at a
given time. Since a computer monitor has a physical size limit, it (and, perhaps the
computing power of the playout environment) has an upper bound on the number
of concurrent segments (i.e., windows) it can effectively play. For example, clearly,
playing out over 6 concurrent (monitor) windows at a given time is excessive. Such
a requirement is captured by the requirement (b) above.

There is a tradeoff to satisfying requirements (a) and (b) at the same time, and
we show in section 4 that this is an NP-complete problem. Therefore, rather than
finding the optimum solution, we propose and evaluate two heuristics that allow us
to obtain a unique presentation graph satisfying the requirements (a) and (b) in a
near-optimum manner.

Once a concurrent presentation is specified (using the presentation graph), it
needs to be played out. We associate a playout agent to each segment in the pre-
sentation, which is a lightweight process (a thread) that plays out the corresponding
multimedia segment. In section 5.1, we describe a semaphore-based technique for
the automated generation, synchronization and termination of playout agents in or-
der to implement the concurrent presentation playout as defined by the presentation
graph.

Another issue is to automate the incorporation of playout-time controls into the
assembled presentation. Let A denote the action “Freeze all video streams that are
currently being played out for 20 seconds”. The presentation assembly system may
designate a keyboard function key that, when pressed, sends the signal S which
indicates to the “playout manager” software that the action A has to be taken.
This is an example of the incorporation of event-action rules from active databases
into the automated presentation organization problem. (One can extend this model
to incorporate nonevents (negative events) and/or prohibited actions [13], as well.)
When such rules, i.e., constraints, are incorporated into the automated presentation
assembly problem, there is a tradeoff between their satisfaction and the satisfaction
of other constraints. For example, when the above freeze occurs, the presentation

Content Presentation Presentation
Selection Organization Playout

Inclusion/ Organization User Control

Exclusion) and Playout
Constraints Constraints Constraints

Figure 1. Multimedia Presentation System

time deadline may no longer be satisfiable, and a playout-time reorganization of
the presentation graph may become necessary. We call such rule-based constraints
playout-control constraints. In this paper, we discuss playout-control constraints
with examples only.

Issues such as physical playout constraints, hiccup-free playout, quality of service
(QoS) guarantees and so on, which are closely related to media presentation, are
not the focus of this paper. The approach we have taken in addressing these issues
is described in [10].

Figure 1 shows the constraint types and their functionality in our multimedia
presentation system. In the rest of this section, we briefly survey the related work
on presentation and playout management issues. Section 2 presents the basic def-
initions used throughout this paper. Section 3 characterizes the organization con-
straints. In section 4, we formally define the presentation organization problem and
discuss two heuristic methods as an approximation to its solution. In section b, after
organizing a presentation in section 4, we present two methods for the presentation
playout. Section 6 gives the concluding remarks and the direction of future research.

1.1. Related Work

In recent years, attempts to tackle the problem of preparing multimedia segments
into a multimedia presentation and conveyance of the resulting presentation for
human users have gained momentum in the literature[14, 11,5, 12, 15, 6, 18, 24, 19].

Little and Ghafoor in [15] made one of the earliest attempts to develop a temporal-
interval based(TIB) model that captures the timing relationships among multime-
dia data segments. They assume that inter-segment temporal relations are either
imposed at the creation time of the multimedia segments (i.e., called live syn-
chronization) or set up artificially (i.e., called synthetic synchronization). In their
work, presentation of each multimedia data segment is represented by a time inter-
val (start time, end time, duration). Using this model with the timing information,
they come up with a playout schedule for the segments with ‘monotonically increas-
ing deadlines’ in order to present them in a timely manner. To this extent, they

specify the temporal access algorithms to facilitate forward and reverse playout as
well as partial-interval evaluation (for pause-resume operations).

The same problem is tackled by Hoepner [11, 12]. In these works, three distinct
problems in multimedia presentations are identified as determining the contents as
well as the layout of the presentation in time and space. However, the main focus
of the work is concerned with the description of temporal aspects of an abstract
presentation behavior. Synchronization and control of temporally related presen-
tation actions are modeled by presentation frame types, sequentializer, parallelizer,
splitter, combiner, and brancher.

These works mainly deal with modeling the way in which multimedia data seg-
ments are presented, but not the contents or the organization of multimedia presen-
tations. As for the feasibility of providing presentations from multimedia databases
over a distributed multimedia system, there have been several studies in describing
the requirements and design of such systems[24, 19, 17].

Znati and Field in [24] focus on the design of the communication protocols, called
¢-channel, to support guaranteed real-time communication for distributed multime-
dia systems. The ¢-channel 1s a network level abstraction of a fractional, simplex,
end-to-end communication channel between a source and a destination to support
the requirements of real-time applications.

Another work in [19] by Qazi, Woo and Ghafoor states the need for a specification
model for the communication and synchronization of multimedia segments in a
distributed environment in order to realize successful retrieval, composition and
presentation of multimedia segments.

2. Preliminary Definitions

We first identify the basic presentation organization constraints that enable users
to express the flow of a multimedia presentation in terms of how and what order
the segments are played out to the user, be it sequential, concurrent, or some
combination of both. In this simple model, no time is involved in expressing the
organization of multimedia segments. An expert user or presentation generator can
express the presentation flow by specifying the presentation organization constraints
for the multimedia segments that are contained in the presentation.

Basically, some segments may have to be played out in a sequential manner (i.e.,
one is before the other). We represent such a constraint between two segments (i.e.,
say a and b) as sequential(a,b) in the textual form and call it a sequentializer
constraint.

Endings of the playout of some segments may signal the presentation to split into
two or more streams, starting with a segment from each stream. Such a constraint
involves at least three segments, one of which is considered to be a designated
segment. After presenting the designated segment, the remaining segments are
presented in parallel. We represent such a constraint among three segments (i.e.,
say a,b and ¢) as split(a,b,c) in the textual form, specify the first argument « as
the designated segment, and call the constraint a splitter constraint.

The last presentation organization constraint type i1s the merger constraint,
which indicates that, after two or more segments are presented in parallel (i.e.,
concurrently), they will merge into one stream, from which a designated segment
will be presented. Like the splitter constraint, the merger constraint involves at
least three segments, one of which is the designated segment. We represent such
a constraint among three segments (i.e., say a,b, and ¢) as merge(a, b, ¢) in the
textual form and specify the last argument ¢ as the designated segment.

Note that no synchronization points (i.e., time values) are specified in this model.
Only relative playout timings of segments are known.

A presentation graph G = (V, F) is a directed graph which is augmented by
two special nodes, initial node I and the final node F', where nodes in V(G) are
labeled with the segments in the presentation, and edges in F((G) indicate the
relative presentation order of two segments (i.e., a — b specifies that segment
a is “before” segment b in the presentation). Edges are added to a presentation
graph according to the specified organization constraints. Figure 2(i) depicts a
one-to-one correspondence between organization constraints in textual form and
the corresponding graph components.

2.1. Obtaining Subpresentations

A subpresentation corresponds to a connected graph and we informally use the term
subpresentation to refer to a structure that contains a collection of segments and
organization constraints from which a presentation graph is constructible. A more
descriptive definition will be given shortly.

Let SS = (81,82, -, sp) denote the selected set of multimedia segments that are
to appear in the presentation. Let OC = (01,02, -+, 0;) denote the presentation
organization constraints that are specified for SS.

Given any sets SS and OC', the subpresentations are constructed in two stages.
In the first stage, the organizationally related segments are grouped together, and
in the second, after augmenting with two extra nodes and a number of edges, each
group becomes a subpresentation.

Stage 1: Grouping the Segments
1. Create a group C; for each segment s; € SS.
2. Consider each organization constraint o; € OC' (in some arbitrary order).

(A) If o; is of type sequential(s;, sy)
i. Let C; be the group that segment s; belongs to, and let C be the
group that segment s; belongs to.
ii. Create a new group (5 such that Cs = C7 U Ch.

1. Eliminate the groups €7 and C' from further consideration.

(B) If o; is of type split(a, S} or merge(S, a) where | S| =n > 2,

1. Let Cy41 be the group that a belongs to, and let C1,Cy, - - -, C)y, be the
n groups that n segments in S respectively belong to.
il. Create a new group Cp 42 such that Cyyo = CLUC2U---Cp UChyy.

iii. Eliminate the groups C,Cy, - - - Clh41 from further consideration.

Let us assume that, after the segments are grouped, we end up with m groups,
which we arbitrarily name as Cy, Cs, - -+, Cy, by changing the indices.

Stage 2: Augmenting Groups into Subpresentations
Consider each group Cj, and create a graph G; with the following nodes and edges
(1<i<m):

1. Make a node for each segment in C; and label it with the segment name.

2. For each organization constraint (as shown in Figure 2(i)) involving the seg-
ments in group Cj,

(A) if it is of type sequential(a, b) where a,b € C;, add a directed edge from
node a to node b (i.e., @ — b) into the graph Gj.

(B) ifitis of type split(a, S) where a € C; and S C Cj, add directed edges from
node a to node s; for each segment s; € S (i.e., @ — ;) into the graph G;.

(C) if it is of type merge(S, a) where a € C; and S C C; , add directed edges
from node s; to node a for each s; € S (i.e., s; — a) into the graph G;.

3. Determine the number of incoming and outgoing edges (i.e., incoming_edge_count
and outgoing_edge_count, respectively) for each node (i.e., segment) in G;.

4. For all nodes v € Gy,

(A) if incoming_edge_count[v] = 0 then add a directed edge from the initial
node I to node v (i.e., I — v) into the graph G;.

(B) if outgoing_edge_count[v] = 0 then add a directed edge from node v to the
final node F (i.e., v — F') into the graph Gj.

Nodes I and F represent the start and terminate nodes, respectively, for each
subpresentation. They both are empty (null) segments. After the augmentation,
we call each graph G; a subpresentation.

FEzample: Using the above procedure, we form a unique subpresentation graph from
a given set of segments and organization constraints. Figure 2 depicts the way the
construction algorithm works. O

A multimedia presentation can be described as a particular arrangement for
a collection of subpresentations. FEach subpresentation G; has a source (i.e., the
segment that is to be presented first which is I in our case) and a sink (i.e., the
segment that is to be presented last which is F' in our case). Every node in a subp-
resentation is related to every other node through some specific temporal relation.

merge(ab,c)] Ss={ab,cdef}

split(ab,c)

n (1)sequential (a,b)
H n (2)merge(c,d,e) H

4]
@litbc,d) n

sequential(a,b) n

(4)sequential ()

0] (in) (i)

Figure 2. Relationship between Organization Constraints and Presentation Graph. (i)Simple
organization constraints and their transformations into graph components, (ii) a set of
constraints and the corresponding graph components, (iii) resulting presentation graph.

Fach subpresentation has a length (i.e., the maximum of the sums of the lengths
of all segments on each path from the source to its sink) as well as a height (i.e.,
the maximum cut[16]) that is computed in a way that will be described shortly.
We will also use the notion of height at a point for a subpresentation. Notice that
I and F' nodes are introduced in each subpresentation. To provide unique node
labels for a presentation graph constructed out of several subpresentations, we may
easily rename I and F nodes of each subpresentation with unique labels (i.e., new
indices). Yet these are the empty (null) nodes in the presentation graph. Thus,
each presentation graph can be made to have only one unique I (initial) node and
one unique F' (final) node by introducing new indices.

Let (G; denote such a subpresentation for a presentation consisting of n subpresen-
tations, 1 < ¢ < n. A particular arrangement for a collection of subpresentations
means that all G;’s are merged into a single connected (presentation) graph G
in such a way that (1) the user-specified limit on the presentation length is not
exceeded, (2) the height of the resulting presentation is less than a user-specified
height limit. As an illustration, the maximum number of video segments that are
presented in parallel must not exceed the available number of monitor windows
for video (specified by the user). We use the term height to refer to the available
number of monitor windows for video. In other words, “joining” a set of (G;’s into
a single directed graph means identifying the presentation organization constraints
among all the G;’s.

3. Presentation Organization

In this section we characterize presentation organization constraints and discuss
the presentation organization issues.

3.1. Presentation Organization Constraints

The purpose of presentation organization constraints is to automate the organi-
zation of a concurrent presentation containing the selected set SS of multimedia
segments (which already satisfy presentation inclusion and exclusion constraints).
We assume that presentation organization constraints are entered into the database
a priori by the database administrator.

To summarize, we use the following presentation organization constraints:
Sequentializer (SQ) constraint between segments a and b: In any presentation with
a and b, presentation of a is succeeded by the presentation of b.

Splitter (SP) constraint between segment a and segment set S: When a and any
subset S’ of S is in a presentation, the presentation of a is succeeded by a concurrent
presentation of all the segments of S”.

Merger (MG) constraint between segment a and segment set S: When a and
any subset S’ of S are in a presentation, after all segments in S’ are concurrently
presented, they are merged into a single stream, and a is presented.

3.2. Interpreting Presentation Organization Constraints

Sequential(a,b) is equivalent to “a meets b” [1] where a and b represent two time
intervals, and their relationship is that the interval b starts at the point where inter-
val a ends. Assuming that S is a nonempty set of segments, two other organization
constraints can be interpreted as follows: Split(a,S) is equivalent to “a meets s;”
Vs; € 5.

Consider the merger constraint merge(S, a). In one case, segment a can start right
after at least one of its immediate predecessors ends (i.e., at-least-one semantics).
We can, therefore, set the starting time of the segment @ as the ending time of the
earliest ending predecessor segment. In another case, segment a can start only after
all of its immediate predecessors end (i.e., all semantics). For this semantics, we
have to set the starting time of the segment a as the maximum of the ending times
of all the segments that immediately precede the segment a.

For the merger constraint, we can express these two semantics as follows: Let a
be a segment, ST be the segment start time, and [be the playout duration of the
segment. Then, for all segments p, where p is an immediate predecessor of segment
a

bl

All Semantics:

0 if a 1s a source

5T(a) = { max{ST(p) + (p)} otherwise (1)
At-least-one Semantics:

0 if @ 1s a source

ST(a) = { min{ST(p) + l(p)} otherwise @

10

(iv)

Figure 3. Computation of Segment Start Times Using Two Semantics of Organization
Constraints. (1) a presentation graph, (ii) The same presentation graph with segment start
times(ST) using the all semantics, (iii)The same presentation graph with segment start
times(ST) using the at-least-one semantics

(iii)

Frample: Using the semantics defined above, we can compute the start times (ST)
of segments in the presentation graph as shown in Figure 3(i). The playout duration

[of each node’s segment is indicated in the lower-right corner of the corresponding

node.

Using the all semantics, the upper graph in Figure 3(ii) shows the presentation
graph of Figure 3(i) with the computed start times for the playout of each segment.
The lower part of Figure 3(ii) shows the playout times of segments using a timeline

diagram.

Using the at-least-one semantics, the upper graph in Figure 3(iii) shows the pre-
sentation graph of Figure 3(i) with the computed start time for the playout of each
segment. The lower diagram of Figure 3(iii) shows the playout times of segments

using a timeline diagram.

O

Note that there exists an anomaly for at-least-one semantics in the timeline di-
agram of Figure 3(iii): Even though the node f is designated as the final node in
the presentation graph, it ends much earlier than one of its predecessors, namely,
the segment e. Because of this anomaly, we use the all-semantics for the merger

constraint in our examples in the rest of the paper.

3.3. Controlling the Length and Height of a Presentation

We call the set OC' of presentation organization constraints a cover if a unique

presentation is obtained by enforcing the constraints in the set OC'. Assume that

ST:2 ST:2
b b b
AW 3 a7 "3
< r a, |7l Ak) \ >f .
/ /4 : : T €)
c € g ST:0 cl,dl,e6 ST:10 ST:0 1 d1 6 ST:5
ST:2 ST:3 ST:4 ST:2 ST:3 ST:4
0} A
]]
a f a f
— — —
| ¢ | d | e | ¢ | d | |
f l l 1 l l 1
0 2 4 6 8 10 Ti;e 0 4 6 8 10 Time

11

a set of presentation organization constraints is a cover for a given collection of
multimedia segments. In this case, the task of forming a presentation is straight-
forward. After forming a presentation graph as described earlier, we use it to find
the longest path from the initial node I to the final node F'. The longest path
gives us the length of the presentation. To satisfy the user-specified presentation
length limit, the only thing that needs to be done is to check whether or not the
user-specified length exceeds the computed presentation length.

As for the height computation, a simple algorithm that is presented in the next
subsection can be used on the presentation graph. This algorithm finds the number
of streams that need to be presented in parallel. As the number of parallel streams
played out vary with time, we are only interested in the maximum number. By
applying the algorithm between the start and end points of the presentation, we
obtain a set of numbers, the maximum of which gives us the height of the presen-
tation (i.e., the maximum number of monitor windows required to play out this
presentation). We then check whether or not the user-specified height exceeds the
computed presentation height.

However, the assumption of having presentation organization constraints forming
a cover, and thus, leading to a unique presentation graph usually does not hold for
real-world applications. In this case, there is at least one segment a that can be
played out in parallel or sequentially with some other segment ¢ without violating
any presentation organization constraint in the set.

3.4. Computing the Height of a Presentation

Given a subpresentation with a presentation graph, what is the maximum number
of parallel windows needed for playing the video segments in the subpresentation?
This problem is identical to finding the maximum “cut” in a given temporally-
aligned graph. Therefore, the maximum cut corresponds to the height of the pre-
sentation. We give the following simple algorithm for this purpose.

Call the start and the end of each segment in a subpresentation as the start and
end event or simply “event”. Assuming that there are n segments in a subpresen-
tation, the total number of events is 2n. Events occur at specific time points which
are called event points. The total number of event points can be fewer than the
total number of events since multiple events may occur at the same event point.
Therefore, the total number of event points is at most 2n.

Since event points are time values (i.e., positive numbers), they can be ordered in
increasing/decreasing order. Let m denote the total number of event points, where
m < 2n, and Event i denote the group of events that occur at the i'* event point,
1<2<m.

Height at a point, height of a subpresentation at any point in time (i.e., say, at
time d) equals the height between event points for Event j and Event j+ 1 where
(1) event point for Fvent j < d, and (2) there does not exist an EFvent ¢ such that
event point for Event j < event point for Bvent { < d, and (3) j < m. This is true

12

A height(max. cut)=3

Il Il -

0 1 2 1 3 1 4 5 Time

Figure 4. A Timeline Diagram Showing the Event Points of a Subpresentation Graph

because no new edge appears in the presentation graph between two consecutive
event points.

Formally, an Event will be characterized by [E, S, T| where E is the event point
(i.e., a positive number), S is the set of segments that start at E, T is the set of
segments that end at F. After ordering the events in increasing event point order,
we denote each event with an index [E, S, T]; for the i*" event, i < m, or an element
of an event ¢ as E;, S;, or T;. For a subpresentation graph, since all the segments
that start will eventually end, the following holds:

m m
SMISil=> 1T (3)
i=1 i=1
The height between any two consecutive event points (Ej and Ep41, k < m) for a
subpresentation is expressed by :

k k
DoISiI=> 1T (4)
i=1 i=1
FEzample: Figure 4 depicts the segment playout behavior using a timeline diagram
for a subpresentation graph. Using the notations introduced so far, the following
events characterize this subpresentation (n=8; m=6):
Event 1: [0, {a}, {}] FEvent 4: [3, {g,f}, {c,d}]
FEvent 2 : [1, {b,c}, {a}] Event 5: [4, {h}, {g,e}]
FEvent 3 : [2, {d,e}, {b}] Event 6 : [5, {}, {h,f}]
The heights between two consecutive event points for this subpresentation graph
are computed as follows:
interval [0,1) =1—0=1; interval [3,4)=7—4
interval [1,2) =3 — 1 = 2; interval [4,5) =8 — 6 ;
interval [2,3) = 5 — 2 = 3; interval [5,00) = 8 — 8 = 0;

bl

Thus, the height of this subpresentation is 3. O

3;
2.

4. Problem Definition

Recall that the subpresentations are G'1,Gs, -+, Gy,

13

First, let us define what we mean by the term arrangement: An arrangement of
subpresentations means that each subpresentation G; is connected to some other
subpresentation(s) G; and Gy without forming a cyclic graph in such a way that
(1) the source node of (5 is an immediate successor of the sink node of G; or the
initial node I, (2) the sink node of GG is an immediate predecessor of the source
node of i, or the final node F'. Recall that T and F nodes in subpresentations can
be renamed (with new indices) so that nodes in the resulting presentation graph
has unique labels.

Definition. Presentation Organization Problem (POP):

Instance : Given (1) a set P of n subpresentations (G, G, -, Gy) each of which
with a height and a length denoted by A(G;) and {(G;) for 1 < ¢ < n, respectively,
(2) a positive number, Length > 0, and (3) a positive integer, Height > 0,
Question : Does there exist an arrangement M for P such that (1) length(M) <
Length, and (2) height(M) < Height?

We will consider a simplified version of the POP problem, called S_POP, where
all the subpresentations are of equal length (i.e., {(G;) = ¢,VG; € P and ¢ is a
constant).

To determine the complexity of S_POP problem, we consider the following known

NP-complete problem Bin Packing and find a polynomial time reduction from Bin
Packing to S_.POP.

Definition. Bin Packing Problem:

Instance : Given (1) a finite set U of items, a size s(u) € ZT for each u € U, (2) a
positive integer bin capacity B, and (3) a positive integer K,

Question : Is there a partition of U into disjoint sets Uy, Us, - -+, Ug such that the
sum of the sizes of the items in each U; is B or less?

THEOREM 1 S_POP s NP-hard.

Proof: We give the following transformation (reduction) from Bin Packing to
S_POP:

The set U of items in Bin Packing is the same as the set P of subpresentations
in S_.POP. Each item has a size s(u)Yu € U in Bin Packing, while in S_POP
each subpresentation has a height h(G;),YG; € P. The bin capacity B of Bin
Packing corresponds to the user-specified Height in S_LPOP. The number of bins,
K, transforms to the number of intervals, N, each of which has a length 'c‘. Overall,
the total length of all the intervals is determined as ¢/N |, which is the user-specified
Length in S_POP.

Now the question in Bin Packing becomes as:

Is there a partition of P into disjoint intervals Iy, In, - -+, In, (each with a length c,
thus the overall length ¢N) such that the sum of the heights of the subpresentations
in each interval I; is less than or equal to Height?

A “yes” answer to Bin Packing requires a “yes” answer to S_POP, and a “no”
answer to Bin Packing requires a “no” answer to S_POP. It is obvious that the
given transformation is polynomial. [|

14

As a consequence of the theorem, we no longer focus on finding an optimal solution
to the POP problem, but instead attempt to find a “good” heuristic solution. The
methods used for designing such algorithms tend to be problem specific [4, 8]. Two
heuristics based on a combination of empirical studies and common-sense arguments
are given next.

4.1. Heuristic 1 : Maximum Parallelism

This heuristic attempts to find the shortest-length presentation that satisfies all the
organization constraints (i.e., note that subpresentations are constructed to satisfy
the given set of presentation organization constraints), the user-specified limits on
the presentation length and presentation height.

The length of a presentation is at least the maximum of the lengths of its subpre-
sentations because, in one extreme case, all the subpresentations will be played out
in parallel and the subpresentation with the maximum length will determine the
length of the presentation. However, a parallel playout of all the subpresentations
may not satisfy the user-specified height limit. Therefore, some of the subpresen-
tations may need to be organized back-to-back (i.e., sequential). Heuristicl first
sets the presentation height with the user-specified UHeight and then tries to form
a presentation with the minimum possible length still satisfying the POP problem.
To do so, a subset of subpresentations are selected and linked together without
exceeding the user-specified height and length limits. If the length limit is not ex-
ceeded and all the subpresentations are linked together, then the algorithm finds a
presentation and declares “success”. However, if there are subpresentations which
are not linked yet, and the length limit ULength is not exceeded by the current
length, then the length is incremented by a certain amount and the same process
is repeated. In case the length is incremented above a threshold value, ULength,
then the algorithm cannot find a presentation and declares “failure”. The pseudo
code of the Heuristicl is shown below:

1. Algorithm Heuristicl1(UHeight, ULength, P):

2. Input:

3. UHeight, ULength: User-specified Height and Length bounds

4. P: set of subpresentations Gy, Ga, -+, Gy

5. each of which is given with h(G;) and I(G})

6. Output:

7. success/failure in forming a presentation

8. Body:

9. X := Policyl,;
10. TLength := 0; /* tentative length */
11. Remain := P; /* set of unrelated Gi’s */
12. Pred := {I}; Presentation := {I};

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

15

/* Tis the initial, F the final node */
while Remain is nonempty do begin
Choose (wrt X) a subset R of Remain such that
>-c.er MGi) < UHeight;
TLength := TLength + max{l/(G;),VG; € R};
of TLength>ULength then begin
TLength := 0; Remain := P;
Pred := {I}; Presentation := {I};
switch(X)
case Policyl: X := Policy?2;
case Policy2: X := Policy3;
case Policy3: Exit with failure;
end
else begin
Remain := Remain - R;
Add R into Presentation by making every subpresentation in
Pred(ie, most recently added subpresentations) an immediate
predecessor of each subpresentation in R;
Pred := R;
end
endwhile
Add {F} into Presentation by making it an immediate successor of every
G in Pred;

Return success with Presentation;

At each iteration within the while loop, choosing a subset of subpresentations can
be performed in many different ways. Currently, we have three policies:

Policyl : Choose the subpresentations with “small” heights, the summation of
which must not exceed the prespecified height.

Policy2 : First choose subpresentations with “large” heights, the summation of
which must not exceed the prespecified height. Then choose subpresentations
with “small” heights, where the total height is less than Uheight.It is possible
that we can still fit more subpresentations with small heights into the presen-
tation without exceeding the prespecified height. Therefore, in this policy, we
add into the presentation subpresentations with large heights first, and then
subpresentations with small heights.

Policy3 : Choose subpresentations in random.

16

4.2. Heuristic 2 : Steady Flow

This heuristic attempts to find the lowest-height presentation that satisfies all the
organization constraints, the user-specified limits on the presentation length and
the presentation height.

The height of a presentation is at least the maximum of the heights of its subpre-
sentations because, in one extreme case, all of the subpresentations will be played
out sequentially and the subpresentation with the maximum height will determine
the height of the presentation. However, a sequential playout of subpresentations
may not satisfy the user-specified length limit. Therefore, Heuristic2 first tries
to form a presentation with the minimum possible height still satisfying the POP
problem. To do so, it sets the tentative presentation height with the maximum
of the heights of subpresentations. Afterwards, the subpresentations are selected
and linked together incrementally without exceeding the user-specified height or
length limits. If the length limit 1s not exceeded and all the subpresentations are
linked together, then the algorithm succeeds in finding a presentation and declares
“success”. However, if the length limit is exceeded, then the tentative height is
incremented by a certain amount, delta, and the same process is repeated. In case
the tentative height is incremented above a threshold value, UHeight, then the al-
gorithm cannot find a presentation and declares “failure”. Note that this heuristic
does not exclude the parallel arrangement of subpresentations. Therefore, some of
the subpresentations may need to be organized in parallel. The pseudo code of the
Heuristic2 is given below:

1. Algorithm Heuristic2(UHeight,ULength,P,delta):
2. Input:
3. delta: the amount of increment
4. UHeight, ULength: User-Specified Height and Length bounds
5. P: set of subpresentations Gy, G, -+, Gy,
6. each of which is given with h(G;) and I(G})
7. Output:
8. success/failure in forming a presentation
9. Body:
10. X := Policyl,;
11. THeight:= max{h(G;),YG; € P}; TLength := 0;
12, /* tentative height and tentative length */
13. Remain := P; /* set of unrelated Gi’s */
14. Presentation := {I}; Pred := {I};
15. /* Tis the initial, F the final node */
16. while Remain is nonempty do begin
17. Choose (wrt X) a subset R of Remain such that
18. S g.er h(Gi) < THeight;

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

4.3.

17

TLength := TLength + max{l/(G;),VG; € R}
if (TLength > ULength) then
if (THeight > UHeight) then begin
THeight := max{h(G;),VG; € P};
TLength := 0; Remain := P;
Pred := {I}; Presentation := {I};
switch(X)
Policyl: X:= Policy2;
Policy2: X:= Policy3;
Policy3: Exit with failure;
end
else begin
THeight:= min{UHeight, THeight+delta};
TLength:= 0; Remain:= P;
Presentation:= {I}; Pred:= {I};
end
else begin
Remain := Remain - R;
Add R into Presentation by making every subpresentation in
Pred(ie, most recently added subpresentations) an immediate
predecessor of each subpresentation in R;
Pred := R;
end
endwhile
Add {F} into Presentation by making it an immediate successor of every
G in Pred;

Return success with Presentation;

Empirical Evaluation of Heuristicl and Heuristic2

What does the Implementation do: User specifies
(1) the desired presentation height, UHeight,

(2) the desired presentation length, ULength,

(3) number N of subpresentations to organize.

After these specifications are given, we do the following (in certain number of

times.)

(i) a new seed value is determined for the random-number generator,
(ii) using the random-number generator, the N subpresentations are generated.

18

—the heights of the subpresentations are obtained from a uniform distribution in

the range of (1..6).

—the lengths of the subpresentations are obtained from a uniform distribution in
the range of (1..10).
(iii) subpresentations are ordered with respect to their heights. Now the Algorithms
Heuristicl and Heuristic2 can be applied on these subpresentations.

How the Heuristics work:

Heuristicl :
For specified height,
(1) tries to find a presentation using policy 1,
If it succeeds, then exits with the presentation, otherwise
(2) tries to find a presentation using policy 2,
If it succeeds, then exits with the presentation, otherwise
(3) tries to find a presentation using policy 3, If it succeeds, then exits with the
presentation, otherwise declares “failure”.

Heuristic2 :
Same as the Heuristicl except for the fact that Heuristic2 tries to find a “steady-
flow” presentation.

What can we measure: To better understand the working principles of two
heuristics and to see the effects of the user-defined parameters on each of them, we
have performed a number of tests by simulating these two algorithms. In our simu-
lation environment, the selected set of segments' for presentation are assumed to be
grouped and augmented to 20 subpresentations according to the method described
in section 2.1. Heights and lengths of subpresentations are obtained from a uniform
distribution between (1..6) and (1..10), respectively. For each set of input parame-
ters supplied by the user, we generate 1000 sets of these subpresentations and, for
each set, try to form a presentation graph conforming to the user-constraints.

5. Presentation Playout

After a presentation is assembled which satisfies all the given presentation orga-
nization constraints, user-specified length and height limits on the presentation
height and length, we now discuss dynamic playout control issues in an automated
multimedia presentation environment.

19

Table 1. Number of times Heuristicl forms a presentation(out of 1000 sets).

| hts:len | 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

6 0 0 0 0 8 24 58 132 261 413 576 724 855 929 973 991 998 999
7 0 0 0 0 19 53 126 278 453 636 785 889 949 980 993 998 999 All
8 0 0 3 15 52 136 315 517 709 869 937 972 993 998 All All Al All
9 0 0 6 46 140 334 540 750 894 963 989 996 All All All All Al All
10 0 2 28 107 286 543 766 908 982 995 998 All All All All All Al All
11 0 14 64 192 463 737 904 980 998 999 All All Al All All All Al All
12 3 35 138 382 671 894 978 997 All All All All Al All All All Al All
13 7 62 220 528 802 953 994 998 All All All All Al All All All Al All
14 20 102 353 683 913 980 998 999 All All All All Al All All All Al All

15 38 179 504 828 966 996 All All All Al All All Al Al Al Al Al Al
16 68 286 651 919 983 999 Al All All Al All All Al Al Al Al Al Al
17 114 430 765 963 996 999 All All All All Al Al Al Al Al All All All
18 165 555 867 982 All Al Al All Al All Al Al Al Al Al All All All
19 229 673 933 992 All Al Al All Al All Al Al Al Al Al All All All
20 319 768 973 995 All All Al Al Al Al Al All Al Al Al Al Al Al
21 429 846 989 997 All Al Al Al Al Al Al All Al Al Al Al Al Al
22 547 886 997 999 All Al Al All Al All Al Al Al Al Al All All All
23 675 922 All All Al Al Al Al Al Al All All Al Al Al Al Al Al
24 770 957 AIl Al Al Al Al Al Al ALl Al Al Al Al Al Al All All
25 866 975 All All Al Al Al Al Al Al Al All Al Al Al Al Al Al
26 922 991 All All Al Al Al Al Al Al Al All Al Al Al Al Al Al
27 957 995 All All Al Al Al Al Al Al Al All Al Al Al Al Al Al
28 986 997 All All Al Al Al Al Al Al Al All Al Al Al Al Al Al
29 992 999 All All Al Al Al Al Al Al Al All Al Al Al Al Al Al
30 999 All All All Al Al Al Al Al Al All All Al Al Al Al Al Al

20

5.1. Generation, Start, and Termination of Playout Agents

In order to describe the design of generic policies for a multimedia playout system
in terms of timing parameters (of a real-time system [2, 9, 20], we first discuss our
playout model and its characteristics.

We associate a playout agent(PA) to each segment to be presented. A PA is
a schedulable entity (i.e., a lightweight process) within the operating system and
responsible for playing out the associated segment. Segments are played out at
appropriate times on specific types of output devices depending on the segment’s
media type. The following parameters describe the characteristics of a PA:

o An arrival time (denoted by a; for PA segment ¢), at which the correspond-
ing segment has been fetched from its source and brought to the presentation
playout site.

o An earliest start time (denoted by r; for PA for segment 7), the PA can start
playing out segment i anytime after r;.

o An actual start time (denoted by p; for PA for segment ¢) at which the PA
starts playing out the segment <.

o A playout duration (denoted by x; for PA for segment), during which the PA
continuously playout the segment i.

o A deadline (denoted by d; for PA for segment 7), by which the PA is expected
to complete its playout of the segment.

o An actual finish time (denoted by f; for PA for segment ¢), at which the PA
completes playing out the segment 2.

Using the notation introduced in section 3.4, we give, in Table 2, our first playout
algorithm.
A P A associated with any segment a has the following pseudo code:
WaitforSV(asr);
Present segment a on its output device in time z;

SignalSV(ar);

WaitforSV and SignalSV are binary semaphore primitives for synchronization
purposes[17, 21, 22]. Concurrent activities typically require synchronization points
so that the slow activities can catch up the faster ones, or the fast activities are
slowed down to let the other not-so-fast activities to come close and meet them
at these points. Each synchronization point is represented as a synchronization
variable or SV (i.e., a binary semaphore). Such a variable, if set, indicates that
the synchronization point has been reached, if unset, then this point has not been
reached. For each segment a, we create two unique SV's, one for the start (asr)
and one for the terminate (ar) both are unset, initially. The following primitive

21

Table 2. First Playout Algorithm.

1. Order the events in the presentation in increasing order in event points.

2. Consider each event (in order) with event point E;

(A) For each segment v in T,
Terminate the PA for v;
SignalSV(vr);

(B) For each segment u in S,
SignalSV(usr);
Start the PA for u;

(C) Wait until the next event point Fitq.

Table 3. Specification of first playout algorithm in terms of timing parameters.

| Parm. setting Meaning

a; = 0; All the segments are ready at the beginning at presentation playout site.
D = Ti; All the PAs start playing out their segments at the earliest start time.
di=r; + z;; All PAs must complete playing out their segments in z; units of time.
fi = di; All the PAs complete playing out their segments at specified deadline.

operations are used on these variables: WaitforSV(SVExpr): to wait for the expres-
sion to become true. SignalSV(SV): to set the synchronization variable SV.

SV is a single synchronization variable and SV Exzpr is an expression involving any
number of SV's separated by and operator. At the beginning, all SV's are unset.
A presentation playout session starts with SignalSV(Igr). Using the parameters

describing the characteristics of P As, this playout algorithm can be expressed as
in Table 3.

Notice that this algorithm is static, meaning that the behavior is predetermined.
However, due to the media-related processing (for example, fetching, uncompressing
or decoding very large video (MPEG) or audio files), or the heavy workload, CPU
time is consumed. As a result, there will be delays in scheduling the PAs. The net
effect is (1) information loss by skipping some frames, or (2) drop in frame rate,
etc. To prevent such cases, we propose, in Table 4, a dynamic, on-line playout
algorithm:

Ezample: Using the subpresentation graph shown in Figure 5, we can easily mod-
ify the PAs so that a complete synchronization of the playout activities is achieved.

22

Table 4. Second Playout Algorithm.

1. For each node v in the presentation graph, create two synchronization variables, one
for start(vsr) and one for terminate(vr).

2. Generate a PA with the following (pseudo)code for each segment a:
WaitforSV(asr);
Present segment a on its output device;
SignalSV(ar);

3. For each organization constraint (i.e, observed in the presentation graph),

(A) if it is Sequential(a,b), add SignalSV(bsr) at the end of PA for a.

(B) if it is Split(a,b,c), add SignalSV(bsr) and SignalSV(csr) (in this order) at the
end of PA for a.

(C) ifitis Merge(b,c,d), add WaitforSV(br and c¢r) and SignalSV(dsr) (in this order)
at the beginning of PA for d.

(1) Sequential(l,b) ¢ Na,
(2) Split(b,c,d) b <

e F
(3) Merge(c,d.€) Pl

(4) Sequential(eF)

Figure 5. A Subpresentation Graph constructed out of constraints (1) to (4)

23

Table 5. Specification of second playout algorithm in terms of timing parameters.

| Parm. setting Meaning

a; =0 All the segments are ready at the beginning at presentation playout site.
pi=ri FDi All PAs start playing out their segments in close range of their release times.
di =ri+x; £ D;2 All PAs can complete playing out their segments in the range of time x;
fi=di £ D;s All PAs complete playing out their segments in the range of their deadlines.
PA for I: PA for b:

WaitforSV(Isr); WaitforSV(bsr);

present I; present b;
SignalSV(Ir); SignalSV(br);

SignalSV(bgr);by (1) SignalSV(csr);by (2)
SignalSV(dgr);by (2)

PA for c: PA for d:

WaitforSV(esr); WaitforSV(dsr);
present c; present d;
SignalSV(er); SignalSV(dr);

PA for e: PA for F:
WaitforSV(er and dr);by (3) WaitforSV(Fsr);
SignalSV(egr);by (3) present F;
WaitforSV(esr); SignalSV(Fr);

present e;
SignalSV(er);

SignalSV(Fgsr);by (4)
O

A presentation playout session starts with SignalSV(Igr). In terms of character-
istic timing parameters, this algorithm can be expressed as in Table 5.

By looking at the values of D;1, D;s and D;s, one can study/observe the sys-
tem characteristics in terms of where and how much delays/speedups occur in a
presentation playout.

5.2. Execution-Time User Control During the Playout

To allow interactive user controls during the playout of an automatically generated
presentation, an arbitrary number of (keyboard) buttons are reserved for the user
interaction. Through these buttons, the user is able to change/affect the flow of
the presentation in certain ways. The following examples illustrate such a control
mechanism.

24

FEzample: 1. Pressing the function key F'1 and entering the value y has the effect
that all streams are frozen for y seconds.

2. Pressing the function key F'2 and entering the value y has the effect that the
specified streams are frozen for y seconds.

3. Pressing the function key F'3 and entering the value z has the effect that, for
the rest of the presentation, the maximum number of concurrent windows must
be equal to z.

4. Pressing the function key F'4 and entering the value & has the effect that, for
the rest of the presentation, the minimum number of concurrent windows must
be equal to z.

5. Pressing the function key F'5 and entering the value y and object id of the
content-object o has the effect that any stream containing a representative frame
with content-object o is frozen for y seconds.

6. Pressing the function key F'6 has the effect that all streams that are currently
being played out are frozen until the Continue Button is pressed.

7. Pressing the function key F'7 and pointing and clicking a number of streams
has the effect that the specified streams are frozen until the Continue Button
is pressed.

8. Pressing the function key F'8 and entering the object id of the content-object
o has the effect that any stream containing a representative frame with the
content-object o is frozen until the C'ontinue Button is pressed.

O

All of these user controls can be modeled with the event-action paradigm of active
databases[13, 20]. In general, e => A indicates that whenever the event e occurs,
the action A must be taken. In all of the above examples, pressing a keyboard
function key corresponds to an event, and its requested effect corresponds to the
action taken by the presentation manager.

FEvent, : Press function key F'1 and enter value y.

Actiong : Freeze all streams for y seconds.

FEventy : Press the function key F6.

Actiony : Freeze all streams until the Continue Button is pressed.

The overall meaning of these two events and actions are the same for our model:
upon the occurrence of either of these two events, the presentation pauses for d
time units, where d equals either y or the time duration between the occurrence of
the event and the pressing of the ContinueButton. Figure 6 shows the significant
points on a timeline during a presentation playout. Significant points are described
below:

25

-4 e e
T | | | | -

Time

Tstart Tfreeze Tunfreeze Tcomputed Tuser

Figure 6. Significant time points during a presentation playout

Tstart 1s the time point at which the playout of the presentation starts. Tfy....
is the time point at which Event, or Eventy occurs. Typjpreeze 18 the time point
at which the playout of the presentation resumes. T.omputeq 1 the time point at
which the playout of the presentation is supposed to end. T s, 18 the time point
corresponding to the user-specified presentation length, U Length.

To analyze the incorporation of such event-action rules into our automated pre-
sentation organization model, we classify the segments of a multimedia presentation
during a presentation playout into three groups: (i) Group D of segments that are
already presented (i.e., Done), (ii) Group C' of segments that are currently playing
(i.e., Currently playing), (iii) Group Y of segments that are yet to play (i.e., Yet
to play). For their incorporation, we create a new initial node I and make it an
immediate predecessor of each segment in C' (i.e. node that is labeled with the
segment name) and the playout resumes with the newly added node I.

To determine whether we need a reorganization of the remaining portion of the
presentation, we first compute the quantities d (i.e., Tunfreese-Tireese) and e (i.e.,
Tuser-Teomputed). Moreover, we find out the value of rollback=max{length(m,),
Ym; € C}, since we may have to “rollback” the playout at most rollback units
to go back to the beginning of the segments that were playing at the time of the
occurrence of the freeze event. The overall delay caused by this event is at most
d + rollback. Therefore, if d 4 rollback < e, then no reorganization is needed.
Otherwise, one has to do an incremental reorganization. This issue is currently
being researched.

6. Conclusion and Future Work

In this paper, we have introduced a constraint-driven methodology for the auto-
mated assembly, organization and playout of presentations from multimedia databases.
It is shown that the presentation organization problem is nontrivial. If the specified
set of organization constraints are not sufficient to construct a unique presentation
graph, we propose heuristic techniques so that a unique graph is constructible.
After a presentation graph is constructed, we propose two playout management
techniques, one for the generation, start and termination of playout agents, the
other to provide dynamic (playout-time) controls for playout management. The
playout characteristics are expressed in terms of presentation playout parameters.
We are currently implementing a prototype system to observe/understand the
playout characteristics by experimenting with the timing parameters, which we in-

26

tend to use in a multimedia presentation system. For the time being, a single host
site is responsible for (1) the selection of presentation contents, (2) organizing the
selected contents into a presentation, and (3) playing out the presentation to the
user. As a future step, we plan to extend this work into a distributed environ-
ment, where the multimedia data (i.e., segments) and related constraints reside on
a server site and the tasks related to selection and organization of contents into
a presentation are carried out by local hosts (clients). The server is responsible
for providing the clients with the available metadata (i.e., inclusion/exclusion con-
straints, set of multimedia segments, and organization constraints) of a particular
subject in multimedia upon a client’s request as well as feeding the clients with the
contents of the presentation (i.e., the set of selected segments). We think that these
extensions are easier due to the use of open system concepts? in most of our design
decisions.

Acknowledgments

We would like to thank...

Notes

1. How the segments are selected is explained in our previous work.

2. An open system is the one that can be incrementally extended with the addition of new
functionality without disturbing the existing system components.

References

1. J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26:832-843, November 1983.

2. N. Audsley and A. Burns. Real-time system scheduling. Technical Report YOR 134, Uni-
versity of York, Department of Computer Science, 1990.

3. D. Bordwell and K. Thompson. Film Art An Introduction. McGraw-Hill Inc., 4 edition,
1993.

4. Thomas H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

5. Roger B. Dannenberg, Tom Neuendorffer, J. M. Newcomer, Dean Rubine, and David B.
Anderson. Tactus: toolkit-level support for synchronized interactive multimedia. Multimedia
Systems, 1:77-86, 1993.

6. G. Davenport, T.A. Smith, and N. Pincever. Cinematic primitives for multimedia. TEEE
Computer Graphics & Applications, pages 67—74, July 1991.

7. D. Le Gall. Mpeg: A video compression standard for multimedia applications. Communica-
tions of the ACM, 34(4):46-58, April 1991.

8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

9. Marc H. Graham. Issues in real-time data management. Real-Time Systems, 4(3):185-202,
September 1992.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

27

Veli Hakkoymaz and G. Ozsoyoglu. Automated assembly, organization and playout of multi-
media presentations as a constraint-driven approach. Technical report, Case Western Reserve
University, 1996. in preparation.

Petra Hoepner. Presentation scheduling of multimedia objects and its impact on network
and operating system support. In Network and Operating System Support for Digitel Audio
and Video, 1991.

Petra Hoepner. Synchronizing the presentation of multimedia objects-oda extension. A CM
SIGOIS Bulletin, 12(1):19-32, July 1991.

Huang-Cheng Kuo and Gultekin Ozsoyoglu. A framework for cooperative real-time transac-
tions. In Proceedings of The First International Workshop on Real-Time Databases: Issues
and Applications, March 1996.

T. D. C. Little. A framework for synchronous delivery of time-dependent multimedia data.
Multimedia Systems, 1:87-94, 1993.

T.D.C. Little and A. Ghafoor. Interval-based conceptual models for time-dependent multi-
media data. IEEE Trans. on Knowledge and Data Engineering, 5(4), August 1993.

C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.

C. Nicolaou. An architecture for real-time multimedia communication systems. IEEFE Journal
on Selected Areas in Communications, 8(3):391-400, April 1990.

G. Ozsoyoglu, V. Hakkoymaz, and J. Kraft. Automating the assembly of presentations from
multimedia databases. IEEE Int. Conf. on Data Engineering, February 1996.

N.U. Qazi, Miae Woo, and Arif Ghafoor. A synchronization and communication model for
distributed multimedia objects. ACM Multimedia, June 1993.

Krithi Ramamritham. Real-time databases. International Journal of Distributed and Parallel
Databases, 1992.

A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts. Addison-Wesley
Publishing Company, third edition, 1991.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

Jeffrey D. Ullman. Database and Knowledge-Base Systems, volume I. Computer Science
Press, 1988.

Taieb Znati and Brian Field. A network level channel abstraction for multimedia commu-
nication in real-time networks. IEEE Transactions on Knowledge and Data Engineering,
5(4):590-599, August 1993.

Received Date
Accepted Date
Final Manuscript Date

