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A comparison of methods for trend estimation
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This paper analyses a number of methods for trend estimation focusing on their ability to
pick up turning points quickly at the end of a series. An application to the Bank of
England flows M4 series is provided which shows that some of the proposed methods

may be more reliable than others for this task.

I. INTRODUCTION

The aim of this report is to present proposals for a method of
estimating trends for the Bank’s monetary statistics. Trend
estimation is a potentially useful technique to aid interpreta-
tion of the data and would complement the existing seasonally
adjusted statistics. The initial aim of the project has been to
discriminate between competing estimates to select a method
that would inform internal policy analysis. If the results
obtained are judged to add value then there must be a
presumption in favour of wider dissemination.

Policy makers and final users of trend figures frequently
tend to evaluate trend estimation methods based on a number
of characteristics such as the ability to pick up turning points
quickly, but also minimizing the risk of false turning points,
smoothness, quick convergence to final trend (i.e. trend
revisions rapidly declining to zero as more observations
become available) and trend unaffected by outliers. There is
likely a trade-off between some of these characteristics, but it
appears that the majority of policy makers, central statistical
offices and central banks are especially concerned with the
ability of a short term trend to pick up turning points quickly at
the end of the series, minimizing however the risk of picking
up false turning points. As this is also the prevailing view
within the Bank, trend estimation techniques for quick
detection of turning points is the main focus of our paper.

There are many techniques for depicting a trend. For some
purposes, relatively simple techniques such as moving
averages or scatter diagrams can provide acceptable results.
But, where data are volatile, or where the early identification
of turning points is critical, it is usually necessary to make use
of more sophisticated mathematical techniques. Broadly
speaking, trend estimation methods fall into two categories:
parametric (or model-based) and nonparametric. We look
in this study at the performance of the following nonpara-
metric methods: (i) GLAS weighted moving average filters;
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(ii) Henderson weighted moving average filters; (iii) LOcally
WEighted Scatterplot Smoothers (LOWESS); (iv) Smoothing
splines. As for the parametric methods, we only look at the
Kalman filter approach. For all the methods, trend estimates
are derived from seasonally adjusted series, what is known in
the literature as ex-post trend smoothing (see Cleveland ez al.,
1994).

The remainder of this paper is organized as follows. In Sec-
tion II we give a brief overview on a number of methods for
trend estimation. In Section III we evaluate the performance of
the methods by focusing on their ability to quickly detect a
turning point in the Bank of England M4 flows series. Section
IV summarizes and concludes.

II. TREND ESTIMATION METHODS

Let y, denote a seasonally adjusted series from which a trend
(or trend-cycle) unobserved component has to be extracted.
We review the different methods of trend estimation in the
following subsections.

GLAS (GL)
GLAS stands for ‘General Linear Abstraction of Seasonality’.
It represents the package currently used at the Bank of
England for seasonal adjustment and trend estimation of the
monetary series (see Young, 1992). The trend of the series is
constructed using a moving-average of data with a triangular
shaped weighting pattern covering approximately two years
(23 months or 7 quarters). The number of points used in the
moving average (denoted by n, and sometimes called trend
window width) governs the ‘degree of smoothness’ of the
trend; thus, increasing n, (by definition an odd integer number)
makes the trend smoother.

To understand how an estimate of the trend at a given point
in time, say o, is obtained in GLAS, we give a simple
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illustrative example. Given the trend window width #,, the set
of at nearest neighbour points in time to 7 (including z) is
identified. Call this set N(z). Define the triangular weighting

function
) = {(')_ ]

where u = 2(z — t)=n,, then observations y, € N(z) are
assigned neighbourhood weights w, = kgras ()= ketas (1)
The estimated value of the trend at time zg is simply calculated
as the weighted average

T(lo): Z WY, (2)

teN(1)

for ¢z € N(»)

otherwise

(1)

The biggest weight is given to the observation at the
evaluation point 7, whereas weights proportionally decrease
as we move away in time from the evaluation point, in either
direction.

A feature of GLAS is that an algorithm is employed to
determine the weights at the end points of the series, based on
the theoretical work by Lane (1972). At the end points of the
series, progressively more asymmetric versions of the
triangular weighting pattern are used. The model developed
by Lane (1972) describes how to derive the weights such that
the amount of revisions to the trend and the seasonal estimates
for each period as later data become available is minimized.
This ‘minimum revision algorithm’ employed by GLAS may
be in contrast with the objective of quick detection of turning
points at the end of the series if there is a trade-off between
ability of a trend to minimize revisions and its flexibility to
adapt its shape to new data at the end of the series.

Henderson filter (HF)

The Henderson filter used in the X11-ARIMA and X-12-
ARIMA packages is also a weighted moving average
smoother, but using a weighting pattern different from the
triangular one employed by GLAS. Given the trend as

T, = Z WEYr+ k (3)

k=—m

the formula for the symmetric Henderson weights applicable
to the kth term is (see Kenny and Durbin, 1982):

wp o f(m + 1)’ — kz}{(m+ 2) — kZ}X

4
(O + 3)"— kz}{3(m+ 2" — 16— 11k2} @

where the constant of proportionality is chosen to ensure that
Zk wr = 1. Here, n, = 2m + 1 is the number of terms or trend
window width, so that, for example, m = 6 for the »n, = 13
term moving average.
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Contrary to GLAS, where progressively more asymmetric
versions of the triangular weighting pattern are used, the
Henderson filter employed in this paper is always symmetric
due to forecasting and backcasting in X-12-ARIMA.

Lowess ALW)

Lowess identifies a certain number of nearest-neighbours to a
given point, xp, and assigns a weight to each neighbour based
on the distance of that neighbour to the point. A value of the
trend at xp is then calculated based on these weights. The
number of nearest neighbours which are used is the smoothing
parameter. Again, the bigger the number, the smoother the
trend. In fact, the size of neighbourhood governs a funda-
mental trade-off between bias and variance of the estimator. If
a large neighbourhood is used, the trend is very smooth (that is
the variance is low), but at the possible cost that it is not
flexible enough representation to adapt to the underlying
pattern of the data (that is the bias can be high).

The Lowess smoother fitted at a given point is derived by
locally averaging the data in a neighbourhood of that point. A
polynomial is fitted to the data using (iterative) weighted least
squares, with the weights computed according to a ‘tri-cube’
weight function. The estimator is constructed through the
following steps (see Hastie and Tibshirani, 1990, sec. 2.11;
Cleveland, 1994, pp. 94-101):

(i) Given the value y, the k nearest neighbours of y are
identified, denoted by N(v).

i) A@y) = maxy(y) |y—y, is computed, the distance of
the farthest near-neighbour from y.

(iii) Weights =, are assigned to each point in N(y), using the
so-called ‘tri-cube’ weight function

Y~V
w
( A@) )
where, for any u,

W(u) = {(()1 )

(iv) The fitted Lowess curve at y, Q(y), is the value of a
polynomial of dth degree fitted to the data using
(iterative) weighted least squares, with the weights
Sompu}ed as in (iii). So, if d = 1 the values of a and b,
a and b respectively, are found that minimize

for 0<u<1

otherwise

T

Z wt(y)(yt —a— byz)2

=1
. LA A A
Then, the fit at r is g(v) = a + by.

The parameter k represents here the smoothing parameter,
being the number of nearest neighbour points. It is common
practice for Lowess to express this smoothing parameter as the
fraction of nearest neighbour points over the total number of
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points. This leads to the definition of the smoothing parameter
o = k=T. It is worth noticing that in practical applications & is
selected based on a combination of judgement and of trial and
error (Cleveland, 1994, p. 96) bearing in mind some certain
guidelines, such as for example to produce a fit that is as
smooth as possible without unduly distorting the underlying
pattern in the data (Cleveland, p. 98). Thus, even though the
choice of parameter is somehow subjective, it must be well
suited to the series.

Smoothing splines (SS)
The smoothing spline smoother is derived as the explicit
solution to the functional minimization problem

T +

min [y, = g(y,)]2 + A ) [g"(z)]zdz]

m(z) 5=

where A represents the smoothing parameter, which is the
trade-off between the smoothness of the curve (the second
derivative term in the integral) and the fidelity to the data (the
residual sum of squares). As discussed by Buja ez al. (1989),
for any given A the solution of the minimization problem is
¢(y) = TREND = Sy wherey = (v1,...,%,...,T) and Sis a
smoothing matrix given by S= (i+ XK)_I, where S is a
matrix of weights with K= D'C™'D. Denoting by
hi=yw1—y,t=1,2,...,T,Dis a (T — 2) XT tridiagonal
matrix with D, = 1=h;, Diy+1 = —(1=h, + 15941), Dipeo =
—(1=h:+1), while C is a symmetric tridiagonal matrix of order
T—2 with Coym1= Crym1 = =6, and Cy = (h; + h1=3."
The trace of the smoothing matrix S defines the ‘degrees of
freedom’ of the smoothing spline smoother; the bigger the
value of the smoothing parameter A, the higher the number of
degrees of freedom.

Kalman filter (KF)

The Kalman filter approach employs the idea of structural
time series modelling where the unobserved component of
trend is assumed to follow a well-defined stochastic process
(Harvey, 1989). A fairly general form for the trend component
is given by

w=T+¢& (5)

with
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T,=T1+ 71+ o (6)
and
Tr=T—1% u (7)

where v and u are zero mean, normally distributed white noise
processes with variances 07 and 02. If 02 = 0, no stochastic
slope is specified for the trend.

The variances of the error terms, Gg, GZT, 0%, are called the
hyperparameters of the model. The hyperparameters play here
the same role of the smoothing parameters in the context of
nonparametric methods. The bigger the value of the variance
0% relative to 02, the more are past observations discounted in
constructing the trend pattern for the forecast function. In this
sense, we can define n, < g7y = 07=0¢, where g+ is called the
g-ratio for the trend. If 0% = 0, a null hypothesis which can be
tested from the data, no stochastic slope is specified for the
trend.

The appealing feature of the Kalman filter approach is that
the smoothing parameter is estimated by maximum likelihood.
The smoothing parameter is thus indigenously determined,
rather than fixed a priori. Given the hyperparameters, the
estimates of the trend component, which are obtained by the
Kalman filter, are optimal in the sense that they minimize the
mean square error of one-step ahead prediction. Statistical
tests on the significance of the different components (for
example the time-varying slope for the trend component) are
available which can lead to a simplification of the general
model.

III. RESULTS

As an application, we consider the Bank of England seasonally
adjusted M4 flows series from January 1987 to September
1996 (117 observations). The series was seasonally adjusted
using GLAS. Trends are calculated on this series by
smoothing splines (SS), Lowess (LW), the Kalman filter
(KF), the Henderson filter (HF) and GLAS (GL), which are
shown in Fig. 1.2 For smoothing splines, the smoothing
parameter A was selected based on residual diagnostics plots
(see the Appendix).3 The fitted trends show two turning points
about 1989:08 and 1992:11, where two vertical lines are
drawn in Fig. 1. It is also worth pointing out the different
behaviour of the Lowess smoother, relative to the other
methods, in 1995; by its nature, the shape of the Lowess trend

"It is worth noting if there are ties in the predictor values the 4; take zero values for some j, what implies the Dj; are not computable. As suggested by Hastie and
Tibshirani (1990 p. 74), the solution is to create a new data set with m < T observations, each one representing a set, and redefining the values of the response
variable as weighted sums. Then, a weighted smoothing procedure would be applied to the new data set.

*SS and LW were estimated using S-PLUS, see Chambers and Hastie (1993) — for both methods a plot with a 95% pointwise confidence band around the trend is

roduced; KF using STAMP, see Harvey ez al. (1995); GL using GAUSS and HF by X-12-ARIMA, see Findley ez al. 1996.

These indicated a value of 0.0005, which has an equivalent number of degrees of freedom of approximately 8.8 parameters. For a mathematical definition of
degrees of freedom in non-parametric regression, see Hastie and Tibshirani (1990). Intuitively, degrees of freedom are interpretable as the number of parameters in
a parametric regression model. An equivalent number of degrees of freedom in Lowess was obtained using A = 0.20, whereas for the Henderson filter we have
used 33 points. In GLAS, the default value was employed (23 points), whereas the Kalman filter was implemented based on maximum likelihood estimates of the

hyperparameters.
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Fig. 1. Seasonally adjusted M4 series (points) with fitted trends
using smoothing splines (SS), Lowess (LW), the Kalman filter (KF),
GLAS (GL) and the Henderson filter (HF). Turning points appear in

1989:08 and 1992: 10

was not distorted by three high values of the seasonally
adjusted M4 series at around the 8000 level.

Given the above information, the series is seasonally
adjusted in a number of sequential runs as each month’s data
were added, starting from October 1992 (i.e. using data from
1987:1 to 1992:10). This seasonal adjustment led to changes
throughout the run of data, which then affected the trend. This
is what the trend estimation procedure would have to deal with
in application, and did not affect the comparison of methods
since they were all reacting to the same data. The value of the
smoothing parameter for the smoothing spline method is
chosen (as before) based on the usual set of diagnostic plots.
On the first run of M4 data to October 1992, this led us to
choose A = 0.0005, the same smoothing parameter which was
applied to the whole series. Again, smoothing parameters
implying an equivalent number of degrees of freedom (i.e.
degree of smoothness of the trend) were selected for Lowess
and the Henderson filter, whereas default values were used in
GLAS. The results obtained for the nonparametric methods
are shown in Fig. 2: here, the trends appear to have a very
similar degree of smoothness with GLAS being perhaps a little
bit smoother than the other methods.* For all these methods
the selected smoothing parameter was then kept fixed in the
sequential runs. In STAMP, on the other hand, maximum
likelihood estimates of the smoothing parameter were
calculated in each run.

The results are presented in Fig. 3 which shows how the
different trends evolve as each month of data is added around
the turning point estimated to have occurred around the end of
1992/beginning of 1993. The Lowess trend, for example,
changes from a decreasing to a level trend over the months of
October 1992 to February 1993 (see curves a, b, ¢, d, ¢). An
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Fig. 2. Trend fitted by different nonparametric methods on the
seasonally adjusted M4 series from 1987:1 to 1992:10

upward trend is first shown when March 1993 data are added
(f curve). This is just a few months after the turning point is
considered to have occurred, in November—-December 1992.
From March 1993 to September 1993, all trend lines
consistently display a global minimum, thus reinforcing the
evidence for a turning point, with the only exception in June
1993 (i curve) where the trend is decreasing.

The overall shape of smoothing spline trend estimates are
similar to Lowess — remember we have used the same amount
of smoothing — but with a number of important differences
too. In the period where the trend was increasing month on
month (see curves #, j, k, I), from June to September 1993, the
trend lines are alike. However, where the position of the data
points was changing rapidly, the two methods varied in the
trend they produced.5 They gave conflicting information in
some months, for example in October 1992 (curve a) and
March and April 1993 (curves f and g). The turning point in
the beginning of 1992, in particular, was a false turning point,
as successive observations failed to confirm it as a genuine
turning point. The Lowess trend (curve a in the top-right panel
of Fig. 3) shows a negative derivative, whereas according to
the smoothing spline trend the derivative evaluated at the most
recent observations is positive. In this sense, the Lowess
method appears to have a letter performance lay (correctly)
not detecting the false turning point. In March and April 1993
(curves f and g), the SS trend lines are still decreasing
(although at a very small rate), whereas LW trend lines
already indicate the presence of a turning point. This appears
to indicate an advantage of LW over SS to pick up turning
points more quickly.

Compared to SS and LW the KF method is not as smooth.
This is expected due to the stochastic nature (random walk

*The program that we have used in this paper for GLAS can only fit trends using the default smoothing parameter. But the program should perhaps be generalized

to estimate a trend with general smoothing parameter.

* These are the areas where the weight given to one data point — not supported by several others — distinguish the two methods most clearly.
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Table 1. Sign patterns in the detection of the turning point
Oct 92 Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
(a) ) (© (d) (e) ® (& () ® Q) (9] ®
GL + - - - - - - - - - - -
HF - - - - - - - - - - = +
SS + - - - - = = - + + + +
LW - - - + + - + + + +
KF - - - + + - + + + +

Legend: — indicates a decreasing trend; = indicates a flat trend; + indicates an increasing trend. Therefore, a — followed by a + or a — followed by a = and a +

indicate a turning point (local minimum in the trend).

process) of the trend component in the KF method. Never-
theless, the method is very flexible and appears quick at
picking up turning points — in this case the turning point was
found in February 1993, only around 3 months after it actually
occurred. The results for the HF and GL methods do not seem
to be as good, while they both deliver very smooth trends with
small revisions they are totally ineffective at finding the
turning point. This is particularly true for the GL method, as
by September 1993 there was still no visible evidence that the
method had found the turning point. There appears to be a
trade off here in that the GL and HF methods have minimal
revisions at the price of being unable to detect turning points
quickly.

Table 1 summarizes the results in terms of the ability of the
various trend methods to detect the turning point estimated (in
September 1996) to have occurred in between November 1992
and January/February 1993. The table confirms the above
discussion that all methods would have picked up the turning
point relatively quickly, with the only exception of the GL and
the HF methods, the worst performers of all our methods. The
quickest method would have been the KF method, which
appears to detect the turning point at the fifth run, in February
1993; at that point in time no evidence of a turning point is
signalled by the SS and the LW methods. The SS trend shows
some weak evidence for a turning point starting from runs f
and g, which becomes stronger only at run j, in July 1993.

IV. CONCLUSIONS

We have examined in this paper a number of methods for
trend estimation by applying the methods to the task of
detecting a turning point in the Bank of England M4 flows
series, located around the end of 1992. The results of our
analysis have indicated that methods like the Lowess smoother
and the Kalman filter smoother would have captured rather
well (that is with only a few months delay) the turning point.
The former method would have also produced a smoother
trend curve. The smoothing spline method would have led to
similar results but its performance was somehow inferior to
the previous two. Weighted moving average methods such as
GLAS and the Henderson filter have delivered the worst
performance overall by failing to detect the turning point even

after a member of periods. Of course, these conclusions are
specific to our M4 series with a, turning point in November/
December 1992; further work would require to repeat the
analysis of this paper to various series before more general
conclusions about the methods can be drawn.
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panel) and diagnostic plots to check for zero-mean (top right panel), constant variance (bottom left panel) and normally distributed (bottom
right panel) residuals. Remark: some heteroscedasticity, as well as non-normality, is apparent in the residuals



