Modeling Ultra-high Dimensional Feature Selection as a Slow Intelligence System
Final Report
CS 2650 Project
Yingze Wang

(yingzewang@cs.pitt.edu)
This final report discusses CS 2650 Project. The topic is modeling Ultra-high dimensional feature selection as a slow intelligence system. The report is organized as follows. In Section one, I will give a brief introduction about the problem definition and related work. In Section two, workflow diagrams are shown to indicate the modeling of system, which contain one main system and additional sub system. In Section three, the Petri Nets model build by ReNew and PIPE2 are shown. In Section four, the implementation of Petri Net for Time Controller is present.
1. Problem Definition

UltraHigh-dimensional variable selection is a hot topic in statistics and machine learning. The problem can be defined as modeling relationship between one response Y and associated features X1,...Xp, based on a sample of size n. It has wide application in different areas, for example gene selection or disease classification in bioinformatics in Fig 1.
[image: image1.png]each patient’s data with p genes
n Patients’degree of
disease sickness

X
Importantgenes

H \
E 7 selected

nxp px1

L)

one Gene
expressionlevel p >>n

nx1

Fig 1 gene selection

The recent algorithms like LASSO, forward regression, backward regression and etc, can deal with moderate scale data, but perform poorly even cannot handle with the ultrahigh dimensional data. In [1], the paper proposed an effective method to learn relationship between features and response in Ultrahigh dimension. This method is more accurate than other state-of-art works although it is not very fast. Motivated by [2], I will use the slow intelligence system proposed by [3] to model this method as well as introducing the new time controller and knowledge base.
Thus the project contains three main task. Firstly, I will model Ultra-high Dimensional Feature Selection as a Slow Intelligence System in mathematical way. Second, I will design the time controller and the Knowledge Base which make SIS approach different from other evolutionary approaches. A sophisticated Time Controller has two states (or module). In each different state, a different decision cycle can be invoked. Thirdly, I will use the Petri Net tools ReNew and PIPE2 to model the whole SIS system and Time Controller. Moreover I will use Xu Wen’s module to test the PetriNet.
2. Workflow Diagram

2.1 Main System

The main system contains five phases of slow intelligence system:

Enumeration: Enumerate number of |P| gene features X1,...Xp.
Eliminator: Compute Pearson correlation between each features Xj and response Y. Rj=Pearson(Y, Xj). Then rank Rj, eliminate the last |P|-|Ai| genes (|Ai|=constant). Select the subset Ai gene features with the largest values Rj.

Adaptation: For other features
[image: image2.wmf]k

x

 in subset of features
[image: image3.wmf]i

PM

-

, adding one feature each time with
[image: image4.wmf]i

M

 to the regression model, compute the
[image: image5.wmf]k

Loss

.

[image: image6.wmf]2

\

2

1

2

ki

ji

kjjkk

xPM

xM

Lossyxx

bb

Î

Î

=--

å

Concentrator: ranking
[image: image7.wmf]k

Loss

, select the number of |Ai|-|Mi| features with smallest
[image: image8.wmf]k

Loss

.

Propagator: add these features to Mi to form new Ai set of features. Then i=i+1.
[image: image9.png]Eliminator: compute Rj=Pearson(Y,

Adaptator: for other features x, in P — M, adding

one each time with M to the regression model:

1
Loss, :E - Z Bx; = Bx,

xxeP\M; xjeM; A

Concentrator: ranking Lossk, select the

Propagator: add
these features to Mi

Fig 2. Workflow diagram for Main system
In this diagram, the TC Main phase means main time controller which controls the termination of whole process. When main time controller set a threshold D, then it checks whether the total number of cycles are larger than threshold. If yes, then it stops the process and output the feature selection result. If the main time controller doesn’t start, then the process should check whether the current result is the same as the last cycle. If yes, the process will also stop.
2.2 Sub Slow Intelligence System
The sub system concentrated on using the existing moderate scale feature selection algorithms to pick up the features from the smaller set Ai. It contains three phases of SIS and one Knowledge Base with a simple Sub Time Controller.

Enumeration: Inquire KB where stores the different moderate-scale algorithms, LASSO, Forward regression and Backward Regression and etc. Then enumerate these different algorithms and use them to compute Mi set of features respectively.
Concentrator: select the best algorithm’s result based on:

[image: image10.wmf]2

2

different algorithms, features in

1

min

2

ijij

ijij

jxM

Myx

b

ÎÎ

=-

å

uur

uruur

Eliminator: Eliminate the worse algorithm depending on its performance rate and update the KB.

Sub Time Controller: Panic Button to evoke the Eliminator.
[image: image11.png]Click the Panic Button?(TCsub)

Eliminator: eliminate the algorithm's
performance rate<10%, update KB.

Enumerator:
Inquire KB,

Use each algorithm to select
[Mij| features from

Concentrator: select the best algorithm's result:

M, = min; -5

2
2

jedifferent algorithms, gefeatules in My

Fig 3. Workflow diagram for Sub system
2.3 Whole SIS System
The whole system workflow diagram is shown below:
[image: image12.png]

Fig 4 workflow diagram for whole system
3 Petri Net Model
3.1 Whole System
In order to show the modeling of this system, I use the ReNew tool to draw the Petri Net. ReNew is a very powerful software for modeling PetriNet because it can contain predicator. Also, the reference nets support method innovations using java language. I write some simple java code on the PetriNet to make it simulate the real system.
[image: image13.png]importjava.uti*,
inti;

intD;

char M

char M,

LASSO

Enumerate E TC Sub.F i Backward aralism Con-Sub TC MainF
OO} —T——0 o1 ToR mEre: o]
. tion M Adapation Concentrate Propagation i1
sewen Stepwise action Mj:
ot
1 Least angle guard Mi o Pt

C Main. T

Fig 5. Petri Net for whole system
The gray sections indicate the sub time controller module and main time controller module. You can see from the net that “guard Mi = Mj”, then the process will output result and end. If “guard Mi !=Mj”, then the process will continue the next loop again. In ReNew, keyword “guard” is the predicator which can check the conditions.
3.2 Time controller design
There are two time controllers in the system. They cannot work synchronously. In other word, when the main time controller is working, the sub time controller cannot work at the same time. The Sub Time controller’s task is evoking the eliminator to eliminate some algorithms and update KB. Thus this can be modeled like a simple Panic Button. A more sophisticated Main Time Controller’s task is setting a threshold, and checking the loop condition. Thus we can represent these two controllers in one PetriNet. Motivated by mutual exclusive event in Operating System, a critical section is introduced in this Petrinet. When one controller occupies the critical section, the other one cannot access it but just wait. The sequence of these two controllers can be defined as different state of token markings in Petrinet. Petri Net modeled by PIPE2 is shown in Fig 6. In this figure, there are places of waiting, requesting, and having tokens, not having tokens and entering critical section for Sub and Main time controller respectively. These indicate the state of two mutual exclusive events.
[image: image14.png]

Fig6. Petri Net for Time Controller
4. Implementation of Petri Net

In order to test the Petri Net for Time Controller, I use the Xu Wen’s software to implement this Petri Net. I write two dummy components for Sub Time Controller and Main Time Controller. Two experiments are running to test the Petri Net.
Case one: Initially, Sub time controller has the token, but Main one doesn’t have token, as Fig 6 marking state. Sub time controller request entering critical section first, then Main time controller request later. So Main one cannot enter critical section until sub one finishes job and free the critical section. The output of implementation is shown in Fig 7. And the sequence of Petrinet transition fired is shown in Fig 8.
[image: image15.png]Sub-Tine Controller request to enter critical section.

fain Tine Controller request to enter critical section.

[sub Tine Controller is using critical section.
ecieved acknouledgenent message 26 from server

tain Tine Controller is waiting for entering critical section.

[subTineController £inish job and free the critical section

tain Tine Controller is using critical section.
ecieved acknouledgenent message 26 from server

hreshold is set to 189. i is equal to 189, so the program should output Featurel

selection result.

+ objects; ¢

% o€ [Bc [Bc [Bc [Bc B

R E@w) b so7em

Fig 7. Output of the implementation for case one

[image: image16.png]Source net

Name
priRemote
reqMain
reqsub
server

]

™

dddadg

TCMain
TCsub

Petri net simulation results

Execute Time Script Path
- EAinal\priRemote jar
2
20
el EAinal\SISv2\Scripts\runServer bat
25
30
-
el
-
a7
38
el
a2
2

Source Code Path

E:VfinalmanualMain java

E:VfinalmanualSub.java

ExVfinalwaitiain java

ExVfinalwaitSub java

ExVfinalifreeSub.java

ExfinalTCMain java
EX\finalTCSub java

Fig 8. Trace of Petri Net simulation results for case one
Case two: Initially, Main time controller has the token, but Sub one doesn’t have token, as Fig 9 marking state. It is different from the marking state in Fig 6. Main time controller request entering critical section first, then Sub time controller request later. So Sub one cannot enter critical section until Main one finishes job and free the critical section. The output of implementation is shown in Fig 10. And the sequence of Petrinet transition fired is shown in Fig 11.

[image: image17.png]

Fig 9. PetriNet for case two
[image: image18.png]DrawAnimate Help

GBn Defaut

fain Tine Controller request to enter critical section.
Message Received

- [af x|

Sub-Tine Controller request to enter critical section.

tain Tine Controller is using critical section.
ecieved acknouledgenent message 26 from server
hreshold is set to 189. i is equal to 189, so the program should output Featurel

selection result.

sub Tine Controller is waiting for entering critical section.

lainTineController £inish job and free the critical section

fsub Tine Controller is using critical section.
ecieved acknouledgenent message 26 from server

W 100% NEEICIFYCOY S DRSREETY

Fig 10 Output of the implementation for case two

[image: image19.png]Advanced Simulation

Source et
Use aurentnet
Resils-
Petri net simulation results

Name |Execute Time Script Path Source Code Path
priRemote = ExfinalipriRemote jar
reqMain 20 ExfinalmanualMain java
reqsub 21 ExfinalmanualSub java
server = Exfinal\SISv2\Scripts\runServer.bat
mn 25
™ a2 Exfinalwaitiain java
T2 25
) 30 ExfinalwaitSub java
T 38
” a7 ExfinalfreeSub java
L) 38
™ a7 ExfinalfreeMain java
TCMain 2 EXfinalTCMain java
TCsub 42 EfinalTCSub java

Fig 11. Trace of Petri Net simulation results for case two
5. Conclusion
This project use slow intelligence system structure to model Ultra-high dimensional feature selection algorithm. Petri Net model of whole system and time controller are built by ReNew and PIPE2. Also, time controller PetriNet is implemented by using Xu Wen’s simulation tool.

In the future, I will use some real data and synthetic data to do the experiment and compare the results with some existing feature selection method like LASSO, forward, backward regression, etc. Moreover, I will use some visualization tool to visualize the result and the process of feature selection.

Appendix:
This is the checklist of all files submitted in the Final project_Wang.zip.
whole system.rnw: Petrinet model for whole system built in ReNew
Petrinet_TC_Caseone.html: Petrinet model for Time Controller for case one built in

 PIPE2

Petrinet_TC_Casetwo.html: Petrinet model for Time Controller for case two built in

 PIPE2

CreateTCMain.html: Create Msg20 for TCMain used in SIS server
CreateTCSub.html: Create Msg20 for TCSub used in SIS server

TCMain.java: java code for dummy main time controller

TCSub.java: java code for dummy sub time controller
freeMain.java: java code for main time controller free the critical section

freeSub.java: java code for sub time controller free the critical section

waitMain.java: java code for main time controller waiting the critical section

waitSub.java: java code for sub time controller waiting the critical section

manualMain.java: java code for main time controller requesting the critical section

manualSub.java: java code for sub time controller requesting the critical section
Reference:

[1] “Ultrahigh dimensional feature selection: beyond the linear model”,

Jianqing Fan, Richard Samworth and Yichao Wu

[2] “A General Framework for slow intelligence systems”, Shi-Kuo Chang

[3] ”Modeling Human Intelligence as A Slow Intelligence System” , Tiansi Dong
[4] “Petri Net Theory and The Modeling of System” James L.Peterson.

_1352656028.unknown

_1352656095.unknown

_1352657811.unknown

_1352656070.unknown

_1352656001.unknown

_1352655901.unknown

