SIS Component for Petri Net Interaction
Callen Shaw (cts8@pitt.edu)

Final Report for CS2650, December, 2010

Summary

In this project I have proposed and implemented a system for integrating the Petri Net model into Dr. Chang’s Slow Intelligence System Testbed. The system was built to the SIS Testbed’s specifications, and has been verified to interface with it as expected. The system consists of a Network Handler to receive and send SIS messages, a Simulator with a graphical user interface to display the current Petri Net and its state, a Viewer which gives the details of Places and Transitions, and an Editor to alter the XML messages that are sent to the SIS server when specified Transitions fire. The Petri Net Component uses the standard, XML-based PNML markup format as its file format. The PNML standard is intuitively extended to handle the OnFire transition events which send SIS messages.
Introduction

The Slow Intelligence System Testbed was created prior to, and used extensively for, projects in Dr. Chang’s CS2650 class in the fall term 2010. Throughout the semester we used the system to study creating compliant components, as well as meta-tasks such as automating the generation and deletion of components.

In my final project, I had been tasked with creating a new component that can act as a Time Controller, using the Petri Net model. Since the SIS Testbed relied almost exclusively on sending and receiving XML messages to coordinate activities, I surmised that a new Component which was able to send arbitrary messages would be able to fulfill this Time Controller role. Additionally, it became clear that allowing the SIS components the ability to control the Petri Net would be immensely valuable, so an additional message type was defined to allow any component to put a token at one of the Petri Net’s Places.

This system was found to be desirable for the SIS Testbed, and given the power of even the basic Petri Net model I predict it could have many uses in the SIS project in the future.

Implementation: Format

The selection of an exchange format for the Petri Net files was only done after much deliberation. While many tools for Petri Nets support many formats for representing them – at times retooling formats never intended for Petri Net models – one of the most widely supported formats is an XML-based format called PNML.

There are many advantages of PNML with respect to this project, but the most important factors for deciding on it were:
1. Multiple editors – Since I did not wish to recreate the Petri Net GUI editors that existed in more complete forms, it is convenient that most of these editors can export their information in PNML.
2. Graphic Standardization – The PNML standard mandates that the logical nets are given hard coordinates for rendering on a new platform. This allowed me to avoid any automatic placement of Net objects, and meant that PNML files created in one program should look identical in my simulator.
3. XML Base – While many Petri Net formats existed, surprisingly few of them used XML. The ubiquity of XML and readily available parsers for it precluded my having to write complex input processors, and allows easy verification in a text editor. Additionally, it allowed my OnFire extension element (<onfire>) to be spliced into the PNML format in a way that is harmless to programs which don’t understand it.
Implementation: Simulation

As the Petri Net model is not too complex, creating a software simulator was quite straightforward. After the PNML file is read, that data is used to create lists of Transitions, each linked to input Places and output Places. A Transition can optionally have an OnFire event specified, which dictates that an SIS message, populated with a user-specified MsgID and any other Key/Value pairs, be sent when the Transition fires.

The simulator runs on a simple loop which iterates over all Transitions, queries if all input places have tokens, and if so fires by putting tokens at all output places (and optionally sending the Network Handler a new message).

Currently the Simulator has no controls, running all the time at full speed, but since a user can place a token by direct manipulation of the simulator this is not a problem. A user simply needs to put an empty Place attached to any Transition that should be controlled, and the Simulator will wait for the user to manually put a token here.

Implementation: Network Handler

The Network Handler manages the connection between the Petri Net Component and the SIS server. When the Petri Net Component is run, it accepts a server address and port, defaulting to 127.0.0.1:7999. Immediately upon loading, a Socket is opened to this address, and the initial SIS handshake (sending MsgID 23, receiving MsgID 26 from server) is performed. After this point, any incoming token packets (MsgID=1000) will cause the Net Handler to put a token at the Place with the specified ID, and an outgoing queue of messages is monitored to send any newly-created OnFire messages. In this way the Network Handler performs most of the functions of previous SIS Components, and indeed shares much code base with them.

Implementation: Viewer and Editor

The Viewer and Editor are small JFrame forms used for interacting with the Simulator. Clicking on either a Place or Transition will bring up the Viewer, which shows common data fields such as ID, Label, Input and Ouput IDs (Places specify Transition IDs, and vice versa), and graphical positioning (x,y). Also shown is the OnFire message for a Transition and an Initial Marking value for Places, which specifies whether the Place has a token at startup. Also on the Viewer is a single button, marked with what action it performs. For Places, the button is how a user can add a token to a Place mid-simulation (without having to send an SIS message). For Transitions, the button opens the Editor used to edit the Transition’s OnFire XML message.

The Editor attempts to work similarly to the prjRemote tool used for authoring and sending XML messages for the SIS projects. One difference is a mandatory MsgID field, to prevent a user from creating a message without one, and slightly modified controls. Specifically, while there is an Add Key button, clicking it does not launch an obtrusive dialog to prompt for the Key name. Instead, the next available key following the pattern keyN, with N being an integer, is automatically added to the XML message.

Users can click any key to change it, and the same goes for the associated values. Changing a text field for a Key to the empty string will delete that Key/Value pair. The Editor can also load an XML message from a file, using methods taken from the SIS projects to map it to the internal KeyValueList.

Any changes to the message are detected when the user tries to exit the Editor, and it will prompt for whether to save changes or discard them. Saving the changes will cause the PNML file to be rewritten, adding the message’s contents to the Transition’s <onfire> element as a child <Msg> element. In this way the direct textual representation of the SIS message is injected directly into the PNML file in an intuitive way.

Conclusion and Future Work

The Petri Net Component was comparatively easy to design and test, owing to the strong code base it is building from. Using the iteratively-improved SIS Testbed, a decoupled, message-based architecture can be supported by Petri Nets. These Nets can be edited by any of multiple external programs, due to the portability of the PNML file format. Because of the extensibility of XML, one addition to the Transition element in PNML was needed to fully support the OnFire message protocol developed, and any other PNML editor will likely operate in full ignorance of the change.

The Petri Net Component project was a success given its time constraints, but more work could definitely improve the system. Primarily, allowing users the ability to easily Pause, Step, and Reset a Petri Net simulation would prove useful in debugging timing issues and improve understanding. Integration of graphical editing of the Petri Net would remove the need for an external editor.

Finally, an extension to higher Petri Net models such as Timed Petri Nets or Petri Nets that allow Predicate Transitions would provide more functionality. However it is not immediately clear that these models could not be realized through a combination of a basic Place/Transition Net and added SIS components. One compromise I suggest is to alter the Tokens to represent SIS messages, rather than the Boolean value encoded in them by my system.
