SINMS: A Slow Intelligence Network Manager based on SNMP Protocol

Francesco Colace', Shi-Kuo Chang” and Massimo De Santo'

'Department of Information and Electrical Engineering, University of Salerno, Italy
*Department of Computer Science, University of Pittsburgh, USA
{fcolace, desanto} @unisa.it, chang(@cs.pitt.edu

Abstract:

Networks and distributed computing systems are becoming
increasingly important and at the same time, more and more
critical to the world of Information Technology. This rash
spread, however, resulted in increased difficulty in
configuring and managing networks. In particular the tasks
of configuration management for IP network devices are
becoming more and more difficult and the Simple Network
Management Protocol is not able to manage very complex
scenarios. Over the past years much efforts has been given
to improve the lack of Simple Network Management
Protocol and a promising approach involves the use of
Ontology. Ontology is a very promising technology and can
be effectively used in intelligent configuration management
scope. This paper introduces a novel approach to the
network management based on the use of the Slow
Intelligence System methodologies and ontology. Slow
Intelligence Systems is a general-purpose systems
characterized by being able to improve performance over
time through a process involving enumeration, propagation,
adaptation, elimination and concentration. A Slow
Intelligence System continuously learns, searches for new
solutions and propagates and shares its experience with
other peers. So the proposed approach aims to develop a
system able to acquire, according to an SNMP standard,
information from the various hosts that are in the managed
networks and apply solutions in order to solve problems. To
check the feasibility of this model first experimental results
in a possible scenario are showed.

1. Introduction

Networks and distributed computing systems are becoming
increasingly important and at the same time, more and more
critical to the world of Information Technology. This rash
spread, however, resulted in increased difficulty in
configuring and managing networks. In fact there is an
emergence of diverse network devices and it has become
greatly difficult to configure those multifarious network
devices with a manual work. The concept of network
management is quite articulated. It involves activities such
as the identification and management of various networks
elements (hosts, gateways, routers, proxy ...), monitoring its
performance, inventory of hardware and software available
on a network and much more. So given this scenario,

efficient and intelligent configuration management
techniques are urgently needed to configure these devices
with automation or semi-automation [1]. A solution for this
problem can be the adoption of the Simple Network
Management Protocol (SNMP). The SNMP manages
network hosts such as workstations or servers, routers,
bridges and hubs to a central computer that runs the
network management software. SNMP performs
management services through a distributed architecture of
systems and management agents. Since network
management is critical for both the control for managing
resources, SNMP can be used to:

e Configure remote devices: the management system
can send configuration information to each host on
the network.

e Monitor network performance: you can track the
processing speed, network speed and outcome data
transmissions.

e Detect network failures or unauthorized access:
the management system can detect the occurrence
of certain events on specific network devices.
Activating an alarm, the device management
system sends a message indicating the event
occurred. Common types of alarms are activated
and start down a device when an error connecting
to a router and in case of unauthorized access.

e Check the network: the management system can
monitor both the entire network to identify users
or groups that access, use and specific types of
devices and network services.

Since its introduction in the late 1980s the SNMP showed
good performance in monitoring for fault and performance,
but it is very hard to use in managing large networks. In
fact SNMP structure of management information (SMI) or
Next Generation Structure of Management Information
(SMIng) is insufficient to represent hierarchical network
configuration data. SNMP, besides, supports with
difficulties several high-level management operations
required by network configuration tasks. Another problem
is that SNMP is based on UDP and so bulk and reliable
configuration data transfers are difficult to ensure. On the
other hand as previously said the network management is a
hot topic and there is a real interest in the development of
an effective methodology. In literature ontology is
considered a good way for supporting the network
management and many papers deal with ontology based

methodologies for network management. In particular they
propose ontology as a layer able to improve the
interoperability among devices and operators. In this sense
[2] proposes an ontology driven approach to the semantic
interoperability problem in the management of enterprise
service. Another interesting approach is in [3], which
proposes an improvement of the current network
management methods with the application of formal
ontologies techniques. In particular it introduces a
management information meta-model integrating all the
information that currently belongs to different management
model used to interoperate with the managed resource.
Another advantage related to this approach is the ability to
include basic semantic behavior for a manager to monitor
and control these resources. Given this scenario this paper
introduces a novel approach to the network management
based on the use of the Slow Intelligence System
methodologies [4] and ontology. The proposed approach
aims to develop a system able to acquire, according to an
SNMP standard, information from the various hosts that are
in the managed networks and apply solutions in order to
solve problems. In particular the proposed system can
handle multiple networks and adopt solutions that have
proved successful in some other context. By the use of
ontologies the system will be able to choose the right action
to take when some hosts send SNMP alerts. The use of the
Slow Intelligence System approach will allow the system to
automatically infer the actions to take. This paper is
organized as follows. The next section introduces the slow
intelligence systems approach. The second section
describes the ontology while the third section describes the
proposed system. The last section introduces the first
experimental results.

1. What is a Slow Intelligence Systems

We will first introduce the concept of Slow Intelligence and
present a general framework for designing and specifying
Slow Intelligence Systems (SIS). We view Slow
Intelligence Systems as general-purpose systems
characterized by being able to improve performance over
time through a process involving enumeration, propagation,
adaptation, elimination and concentration [4]. A Slow
Intelligence System continuously learns, searches for new
solutions and propagates and shares its experience with
other peers. A Slow Intelligence System differs from expert
systems in that the learning is implicit and not always
obvious. A Slow Intelligence System seems to be a slow
learner because it analyzes the environmental changes and
carefully and gradually absorbs that into its knowledge base
while maintaining synergy with the environment. A slow
intelligence system is a system that (i) solves problems by
trying different solutions, (ii) is context-aware to adapt to
different situations and to propagate knowledge, and (iii)
may not perform well in the short run but continuously
learns to improve its performance over time [4]. Slow

Intelligence Systems
characteristics:

typically exhibit the following

Enumeration: In problem solving, different solutions are
enumerated until the appropriate solution or solutions can
be found.

Propagation: The system is aware of its environment and
constantly exchanges information with the environment.
Through this constant information exchange, one SIS may
propagate information to other (logically or physically
adjacent) SISs.

Adaptation: Solutions are enumerated and adapted to the
environment. Sometimes adapted solutions are mutations
that transcend enumerated solutions of the past.

Environment

[]

Propagator
-—

Problﬂ—’ Enumerator |

4" Eliminator H Concentrator ﬂ Solution

& A
| |
| |
I L

Timing
Conmoller

’_Q_‘

Environment
Fioure 1 - The basic huilding block (BBB)

Elimination: Unsuitable solutions are eliminated, so that
only suitable solutions are further considered.

Concentration: Among the suitable solutions left,
resources are further concentrated to only one (or at most a
few) of the suitable solutions.

The sixth one, on the other hand, is rather unique for SIS:

Slow decision cycle(s) to complement quick decision
cycle(s): SIS possesses at least two decision cycles. The
first one, defined as the quick decision cycle, provides an
instantaneous response to the environment. The second one,
defined as the slow decision cycle, tries to follow the
gradual changes in the environment and analyze the
information acquired by experts and past experiences. The
two decision cycles enable the SIS to both cope with the
environment and meet long-term goals. Sophisticated SIS
may possess multiple slow decision cycles and multiple
quick decision cycles. Most importantly, actions of slow
decision cycle(s) may override actions of quick decision
cycle(s), resulting in poorer performance in the short run
but better performance in the long run. Now we can
consider the structure of SIS by the introduction of the

Environment

[T]

Propagator

Problﬂ—v Enumerator T* Adaptor 4.‘ Eliminator H Concentrator ﬂ Solution

& A Y
]]
]]
i i
h h

Processor &

Controller

&

[] 1

h

Knowledge Base

Ficure 2 - The advanced building block (ABB)

basic building block and advanced building block. Figure 1
illustrates the Basic Building Block (BBB).

Problem and solution are both functions of time, thus we
can represent the time function for problem as
X (t) probiems and the time function for solution as
V¥ (t) solution- The timing controller is also a time function
timing-control(t). For the two-decision-cycle SIS, the basic
building block BBB can be expressed as follows:

if timing-control(t) == 'slow'
then /* timing-control(t) is ‘slow’ */
Yy (t) solution = Yconcentrate (geliminate (gadapt

(genumerate (X (t) problem))))
else /* timing-control (t) is not ‘slow’ */

Y (t) solution = fconcentrate (feliminate (fadapt
(fenumerate (X (t) problem))))

Where Yenumerates gadapt’ Yeliminates and Yconcentrate At
the transform functions for enumeration, adaptation,
elimination and concentration respectively during slow
decision cycles, and fenumerate: fadapta feliminates and
f concentrate are the transform functions for enumeration,
adaptation, elimination and concentration respectively
during quick decision cycles. Section 5 presents an example
where some of these transform functions may be omitted
during quick decision cycles.

An Advanced Building Block can be a stand-alone system
as shown in Figure 2. The major difference between an
ABB and a BBB is the inclusion of a knowledge base,
further improving the SIS’s problem solving abilities.

Since the transform functions of the ABB are influenced by
the knowledge base, they are knowledge transforms. When
the knowledge base is ontology, the transforms are
ontological transforms. A particular ontological transform
emphasized in our research is the ontological filter.
Ontological filters can be used both as the Eliminator and
as the Concentrator. The Propagator can also use
ontological filtering to selectively send messages to other
SISs. It is useful to underline how a slow intelligent system

works at its best when works on lightweight plus ontology.
This kind of ontology will be explained in details in the
next section.

2. Why a Slow Intelligence System needs
Ontology?

The definition of ontology is still a challenging task [5].
The term ‘ontology’ has its origin in the Greek word
‘ontos’, which means ‘being’. So in this sense ontology
could be defined as a branch of philosophy dealing with the
order and structure of reality. In the 1970s ontology came
to be of interest in the computer science field. In particular
the artificial intelligence community started to use the
concept in order to create a domain of knowledge and
establish formal relationships among the items of
knowledge in that domain for performing some processes
of automated reasoning, especially as a means for
establishing explicit formal vocabulary to be shared among
applications. The term ‘ontology’ was first used in the
computer science field by Gruber who used the term to
refer to an explicit specification of a conceptualization [6].
The use of this term is rapidly growing due to the
significant role it plays in information systems, semantic
web and knowledge-based systems, where the term
‘ontology’ refers to “the representation of meaning of terms
in vocabularies and the relationships between those terms”
[7]. Also this kind of definition is still satisfactory for each
field where ontology can be applied and so perhaps a good
practical definition would be this: “an ontology is a method
of representing items of knowledge (ideas, facts, things) in
a way that defines the relationships and classification of
concepts within a specified domain of knowledge” [5].
Following this point of view, ontologies are “content
theories”, since their principal contribution lies in
identifying specific classes of objects and the relations that
exist in some knowledge domains [8]. Ontologies can be
classified into lightweight and heavyweight ontologies [9].
Lightweight ontologies include concepts, concept
taxonomies, simple relationships between concepts (such as

specialization “is_a”) and properties that describes
concepts. Heavyweight ontologies add axioms and
constraints to lightweight ontologies. Axioms and

constraints clarify the intended meaning of the terms
gathered in the ontology. Commonly ontology is defined as
0= {C, A, H, R, R} where:

e Cis the concept set. ¢ € C expresses one concept
and in each ontology there is ever a root concept
marked as “Thing”. In particular for each c€ C
there exist a descendant nodes set (Cpy) containing
all its under layer concepts and an ancestry nodes
set (Can) containing all upper layer concepts

e A is the concept attributes set. For ce€ Cits

attributes set is expressed as Ac = {a;, ..., a,}
where n expresses the number of attributes related
toc

e H expresses the concept hierarchy set. The
formalism (c;j,c;) means that c;is the sub-concept of
ci. In other words this set contains the is a
relations among the classes.

e Rp is the set of semantic relations type. Ry =
RTDU Rry. Ryp means the set of predefined
relation (same_as, disjoint_with, equivalent) while
Rry means the set of user defined relation type.

The formalism (cj,cj, r) with 7 € RT means that

between c; and c; there is the r relation. The set
RelR+(c;,c;) contains the relation r between c; and
Cj

e R is the set of non-hierarchical relations. The
formalism (cjc;, r) with 7€ R means that
between c; and c; there is the r relation. The set
Rel(cj,c;) contains the relation r between c; and c;

In the case of a Lightweight Ontology there are no Rt or R
sets, therefore, the Lightweight Ontology is defined as: Op
= {C, A, H}. Therefore, the lightweight ontology is a very
simple and basic representation of a knowledge domain and
contains only a very general statement of a problem. The
lightweight ontology can be viewed as a sort of taxonomy
of the scenario and a first approach to the resolution of
various users’ queries. Obviously, it could be complicated
by the insertion of new non-hierarchical relationships that
enrich its semantic expressivity. In this case, a more
mathematically rigorous representation is needed to provide
greater confidence that the real meaning behind terms
coming from different systems is the same. Heavyweight
ontologies are extensively axiomatized and thus represent
ontological commitment explicitly. Axioms help to exclude
terminological and conceptual ambiguities due to
unintended interpretations. Heavyweight ontologies can
have a lightweight version. Many domain ontologies are
heavyweight because they support heavy reasoning.
Therefore, the heavyweight ontologies add axioms, well-
formed formulas in a formal language, and constraints to
lightweight ontologies in order to clarify the intended

meaning of the terms gathered on the ontology. Therefore,
a heavyweight ontology is defined by Oy = {C, A, H, Ry,
R, Ax} where Ay indicates the axioms that are in the
ontology. Lightweight and heavyweight ontologies can not
be considered as good solution for a Slow Intelligent
System.

Lightweight ontologies propose a very simple view of the
domain and do not allow a detailed description of the
interactions among all the components in the domain.
Using a lightweight ontology, users or systems can only
share a very small and simple description of a domain that
might not be useful for the resolution of a problem. On the
other hand, using a heavyweight ontology, users can create
and share very complex domains. However, it is very easy
to have problems defining axioms as well as managing the
ontology. To address these problems, a solution could be
the introduction of a lightweight plus ontology defined as
O+ = {C, A, H, Ry, R}. By introducing non-hierarchical
relations, a lightweight plus ontology is more complex and
semantically richer than the lightweight ontology, but it is
not complex as a heavyweight ontology because there are
no axioms to consider. The starting point of this approach is
the idea that it is reasonable to think that between the
lightweight and the heavyweight ontology there are a series
of ontologies that can be defined as lightweight-plus
ontologies.

Some user requests can be supported by the use of one of
these lightweight plus ontologies. Although the use of
heavyweight ontologies guarantees the full execution of a
task or a request, it does not assure the optimal solution.
Each of these ontologies enriches its semantic level by the
introduction of new classes, relations, functions, formal
axioms and instances. These enrichments allow a better
configuration of the system and the satisfaction of user
requests. The lightweight plus ontology will be the starting
point for the definition of a management network system.

3. A Slow Intelligence Network Manager based on
SNMP Protocol

As previously said the aim of this paper is the introduction
of a LAN-based management system based on SNMP
protocol and the Slow Intelligence approach. The starting
point is the general schema depicted in Figure 3. In this
way, we have M different LANs to which may belong to N
different types of hosts that have to be managed. Each of
these LANs is dynamic and therefore allows the
introduction of new hosts and the disappearance of some of
them. The local servers are in principle able to solve the
main problems in the LAN management, but thanks to the
dynamism of the LANS may be faced with unexpected
situations. The environmental conditions in which the LAN
operates can influence the performance of various hosts and
must be taken into account. In this scenario a fundamental
role is played by ontologies.

[e p— T B T —— o]
\ ‘\

Server_Locale_k Server_Locale_m

Server_Centrale
(Hostﬁiﬁl} [Hosu?z] AAAAAAAAA [HostﬁiﬁN]

[Hos! Jil] [Host ALZ}

Figure 3: Network Management: A general Scenario

In particular it is necessary to introduce and define the
following ontologies:

e Osnme = {Csnmp, Asnmr, Hsnmp, Rrsnmvp, Rsnmp) -
This ontology aims to define the entire structure of
SNMP protocol by analyzing the various messages
and the relations between them

b OFault = {CFault: AFault, HFault, RTFaulta RFault}- This
ontology describes each kind of possible errors
that can occur within a LAN

° OCause = {CCauses ACause» HCauses RTCauses RCause}- This
ontology defines the causes of the faults that may
occur in a LAN

b OSolution = {CSoluliom ASolutiona HSolutiom RTSolutiom
Rsomtion}- This ontology defines the solutions that
can be taken to recover from fault situations which
occurred within a LAN

d OAction = {CAction; AAction: HActiom RTActions RAction}-

This ontology aims to identify the actions to be

taken in order to recover from fault situations

OComponent {CCOmponents AComponent» HComponem:

Ricomponents Raction }. This ontology describes the

components that may be present within a LAN

OEnvironment = {CEnvironmenta AEnVironmenta HEnVironmentn

RhEnvironmenta REnVironmem}' ThlS OntOIOgy descrlbes

the environment where the LAN works

In order to allow the communication among the various
hosts and servers that are in the various LAN the following
messages have to be introduced:

Mcsi(SNMP, ID_Components) = this is the SNMP message
that the client sends to the local server when an error has
occurred. The ID_Componente used to identify the type of
component that launched the message.

Mgic({Action}) = this message, sent by local server,
contains the actions that the client have to implement for
the resolution of the highlighted fault.

The local server has to implement the following functions:

O’raurr = f(Mcsi(SNMP), O’samp) = this function aims to
build the ontology of faults from the analysis of received
SNMP messages and SNMP ontology within the local
server. It is important to underline how the SNMP ontology
on the local server is only a part of that present in the
central server and is built from time to time following the
faults that occur within the LAN.

O’cause = &(Mcsi(SNMP), O’syvp) = this function aims to
obtain the ontology of the causes that generated the
received SNMP messages.

O’sotution = N(O’Faut, O’cause) = this function calculates the
ontology of possible solutions that the local server can find
for the solution of the fault situation

O’action = Kk(O’somtiom) = this function calculates the
ontology of possible solutions that the system can identify
error to resolve the situation highlighted by the SNMP

These functions can be considered as the enumeration
phase of the Slow Intelligent.

After the determination of these functions the system can
adopt the Action to apply in the LAN by the use of the
following function: {Action} = t(O’action, O’Components
O’ Environment) = this is the set of actions that the client, or the
host involved in the fault, must implement in order to solve
the problem identified by the SNMP message. In practice,
this involves defining, from ontologies of actions and
components, the instances of actions to implement to
resolve the faults that occurred.

This function implements the Adaptation, Elimination and
Concentration phases of a Slow Intelligence System.

All these operations are carried out by involving the local
server and hosts on the managed LAN. It is obviously the
local server can not always perform operations that are
asked, because it does not know the full SNMP ontology. In
fact the managed LAN can change: for example new
components can be added. So new messages, functions and
actions have to be expected among local servers and central
server. The messages are so defined

Mcgi(SNMP, ID_Component) = this message contains the
SNMP signal, sent by a host, that the local server is unable
to manage and that it sends to the central network. The
central server sends this message to the other local servers
local in order to obtain information on the management of
the SNMP signal.

MSle(O,SNMP-is O’ cause-i> O’ solution-is O’ Action-i » {Action}) =
this message contains the information obtained from local

servers about the SNMP signal management. downstream
of question to which they have undergone. This message
can be empty when no local servers ever managed in the
past this kind of SNMP signal. Related to these messages
there are the following functions:

O’ samp-i = F(Msiisi(SNMP), snmp-j) = this function expresses
the subset of the SNMP ontology built in the local server j
needed by the local server i.

O’ cause-i = G(O’snmp-i) = this function expresses the ontology
representing the causes of the fault. This ontology is built in
the j-th local server and can be empty when this server
never faced this problem.

O’ sotutioni = H(O’ cause-i) = this function gives the ontology of
the solutions that can be adopted in order to solve the fault
related to the SNMP signal. This ontology is built in the j-th
local server and can be empty when this server never faced
this problem.

O’ action-i = K(O’solutioni) = this function gives the ontology
representing the actions that can be adopted for the
solutions of the faults related to the SNMP signal. This
ontology is built in the j-th local server and can be empty
when this server never faced this problem.

The central server collects all the ontologies, obtained in
the various local servers and previously described, and
selects one of them according to an analysis based on
ontology similarity. After this phase the central server can
determine the action that have to be applied in the i-th LAN
in order to solve the fault. So these actions can be sent to
the i-th local server. In this way the following function can
be introduced: {Action;} = T(O’action-i» O’ Componentj) = this
function calculates the set of actions that the client must
adopt in order to solve the problem identified by the SNMP
signal. The set of possible actions can of course be zero. In
this case the support of an expert is needed. The previous
messages and functions implement the propagation phase of
the slow intelligence system approach.

The operational workflow is the following:

e Step 1: a SNMP messages generated by the Client
as a result of a fault and sent to the local server

e Step 2: The local server receives the SNMP
message and tries to identify the problem through
analysis of various ontologies.

e Step 3 If the local server can identify the problem
it generates the solutions and the actions that the
various hosts in the LAN have to be apply.

e Step 3.1 The hosts get the actions and put them
into practice

e Step 4 If the local server does not identify the
problem sends the report to the central server.

e Step 5 The central server sends to all local servers
received the message

e Step 5.1 Other local servers after receiving the
message attempts to determine the possible actions
and then send everything to the central server.

e Step 6 If the central server has received the
possible actions by local servers then sends them
to the local server that has requested it. If no action
is received, however, the central server, based on
the received message and its general ontologies
determines the actions to be sent to the local
server.

e Step 7, the local server send the actions to the
various hosts that are in the LAN

e Step 7.1 The hosts get the actions and put them
into practice

4. Experimental results
In order to test the performance of the proposed system an

experimental campaign has been designed. First of all the
working scenario has been settled (figure 4).

Server_Centrale

R e

: {HostﬁiﬁN] [Hosug} [Hostjil}

Figure 4: the operative scenario
In this scenario the central controller has to manage two
different LANs. The first one is composed by a Cisco
switch and 30 personal computers equipped with Microsoft
as Operative System and Microsoft Office as applicative
software. The second LAN is composed by a Nortel switch,
30 personal computers equipped with various operative
systems (Microsoft Windows XP, Linux Red Hat and
Apple SnowLeopard) and a HP network printer. Each local
server has SNMP ontology able to cover the 80% of the
SNMP messages that the hosts in the LAN can launch. The
experimental phase aimed to evaluate the following
system’s parameters:
e The system’s ability to identify the correct
management actions to apply in the LAN after a
SNMP signal. This parameter, named CA, is so
defined:

cA # Correct _ Action

~ #Correct _ Action+#Wrong _ Action

e The system’s ability to select in a LAN a viable
solution that was previously adopted in a similar
case in another LAN. This parameter, named IS,
is so defined:

_ #Correct _Inferred _ Action

#Correct _Inferred _ Action+#Wrong _ Inferred _ Action

e The system’s ability to manage the introduction of
a new component in a LAN. In particular the
system has to recognize components that were

IS

previously managed in other LANs. This
parameter, named KC, is so defined:
KC = #Correct _ Action _ NC

#Correct _Action NC+#Wrong Action NC
The previous indexes were calculated in the following way:

e The CA index: this index was calculated after 10,
20, 30, 40 and 50 SNMP signals. In this case there
was not variations in the LANs

e The IS index: this index was calculated forcing
some SNMP events in the LAN not expected in its
SNMP reference ontology. This index was
evaluated after 10, 20, 30, 40, 50 SNMP signal
not expected.

e The KC index was estimated after the introduction
of new components in a LAN. In particular for
five times a component belonging to a LAN has
been shifted in the other LAN and the index was
evaluated after 10, 20, 30, 40, 50 SNMP signal
launched from the host.

In the next table the obtained results are showed:

Index 10 20 30 40 50
CA 90,00% | 95,00% | 93,33% | 92,50% | 92,00%
IS 50,00% | 60,00% | 66,67% | 70,00% | 74,00%
KC 60,00% | 70,00% | 76,67% | 80,00% | 82,00%

Table 1: Obtained Results. The KC has to be considered
as average value

The indexes show the good performances of the system. In
particular the CA index, that expresses the ability of the
system in the recognition of the correct actions in the LAN
after a SNMP signal, is very good. The IS index witnesses
how the system uses at the best the SIS approach. In fact
the system improves its performances sharing knowledge
among the various local servers. At the beginning the index
is very low but it increases after few iterations. In addition,
the KC index shows a similar trend.

Conclusions
In this paper a novel method for network management has

been introduced. This method is based on, SNMP;
Ontology and Slow Intelligence System approach. It has

been tested in an operative scenario and the first
experimental seems to be good. The future works aim to
improve the system by the use of new and effective
methodologies for the ontology management and the use of
other network management approaches.

References

[1] Hui Xu, Debao Xiao, “A Common Ontology-based
Intelligent Configuration Management Model for IP
Network Devices”, Proceedings of the First International
Conference on Innovative Computing, Information and
Control

[2] A. K. Yiu Wong, P. Ray, N. Parameswaran, J. Strassner,
“Ontology Mapping for the Interoperability Problem in
Network Management”, IEEE Journal on Selected Areas in
Communication, Vol. 23, No. 10, 2005

[3] Jorge E. Lopez de Vergara, Antonio Guerrero, Victor A.
Villagra, Julio Berrocal, “Ontology-Based Network
Management: Study Cases and Lessons Learned”, J.
Network Syst. Manage. 17(3): 234-254, 2009

[4] Shi-Kuo Chang, “A General Framework for Slow
Intelligence Systems”, International Journal of Software
Engineering and Knowledge Engineering, Volume 20,
Number 1, February 2010, pp. 1-15.

[5] Jepsen, T., Just What Is an Ontology, Anyway?, IT
Professional, vol. 11, no. 5, pp. 22-27, Sep./Oct. 2009.

[6] Gruber, T.R, Translation approach to portable ontology
specification, Knowledge Acquisition, vol. 5, pp. 199-220,
1993.

[71“OWL Web Ontology Overview”, W3C
Recommendation, 10 february 2004,
http://www.w3.0rg/TR/2004/REC-owl-features-20040210/
[8] Maedche A., Staab S., Ontology Learning for the
Semantic Web, IEEE Intelligent Systems, vol. 16 no. 2,
Mar/Apr 2001, Page(s): 72-79.

[9] Corcho, O., A Layered Declarative Approach to
Ontology Translation with Knowledge Preservation,
Volume 116 Frontiers in Artificial Intelligence and
Applications, 2005.

