
Spotlight

Extreme
Programming
Rapid Development for
Web-Based Applications

As software organizations continue to move
toward Web-based systems development,
they often assign or outsource such projects

to small teams of highly qualified, but often rela-
tively young, developers. Frequently, the developers’
attitude is less than positive toward software engi-
neering practices—particularly software process
improvement initiatives and metrics collection.

Part of the problem is the business context:
Web-based applications demand faster time-to-
market and the continual integration of new
requirements. Such demands have increased the
popularity of agile software processes, which let
teams increase development productivity while
maintaining software quality and flexibility.

Agile processes like extreme programming
(XP),1-3 Scrum,4 Crystal,5 and adaptive software
development6 aim to increase a software organi-
zation’s responsiveness while decreasing devel-
opment overhead. They focus on delivering exe-
cutable code and see people as the strongest
ingredient of software development. Here, we
offer an overview of the philosophy and practice
behind XP, which is currently the most popular
agile methodology.

XP Overview
XP consists of 12 related practices and works best
for small teams of 5 to 15 developers. Rather than
focus on paper-based requirements and design
documentation, XP concentrates on producing
executable code and automated test drivers. This
focus on source code makes XP controversial,
leading some to compare it to hacking. We believe

this comparison is unjustified because XP highly
values simple design, and counters hacking claims
by emphasizing refactoring, strong regression test-
ing, and continuous code inspections through pair
programming.

XP and Web Development
XP’s focus on small teams lets it replace paper-
based documentation with face-to-face commu-
nication. Hence, it’s a good fit for many Web-
based software projects, which often postpone
documentation efforts because of time-to-market
constraints.

In XP, all developers work closely together so
they can communicate informally rather than
spending time documenting designs and decisions.
As long as teams remain small, this approach pays
off: It’s faster to talk directly than to write down
development knowledge. In addition, direct com-
munication is typically limited to existing issues.
To produce documentation, writers often have to
make assumptions about what information will be
useful for readers. If these assumptions are wrong
or if the software design changes drastically, the
documentation effort is wasted. As the develop-
ment organization grows, however, time spent
exchanging product knowledge and training new
people increases and often renders XP unsuitable.

Productivity Gains
XP’s focus on reduced documentation should
obviously improve productivity—at least in the
short run. In fact, our case study showed strong
productivity gains after a switch from a document-

86 JANUARY • FEBRUARY 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Frank Maurer and Sebastien Martel • University of Calgary

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 27,2020 at 11:16:10 UTC from IEEE Xplore. Restrictions apply.

centric development process to XP.7

We studied a small company with nine full-time
programmers developing a Web-based system over
16 months. Aside from the development process,
which changed from a fairly traditional object-ori-
ented approach to XP, all aspects of the project
stayed constant. We calculated three size metrics
by comparing the new release with the previous
system version:

� NLOC measures new lines of code (Java source
code plus HTML code);

� #methods measures the number of new meth-
ods; and

� #classes measures the number of new classes.

Table 1 summarizes our findings and shows pro-
ductivity gains between 66.3 percent and 302.1 per-
cent based on hard metrics. We measured effort as
the number of hours billed to the customer. We offer
a detailed analysis of our data and results elsewhere.7

XP Practices
XP proposes a set of software development prac-
tices to increase productivity while maintaining
quality. We group XP’s 12 practices according to
three key areas: customer satisfaction, software
quality, and development process organization.

Customer Satisfaction
Building a high-quality software system is irrele-
vant if it does not solve the customer’s problem.
To increase customer satisfaction, XP uses two
practices: on-site customer and small releases.

On-site customer. Determining and prioritizing
requirements is essential for any successful soft-
ware project. However, trying to “get the require-
ments right” before the software is designed and
implemented is problematic in Web-based systems,
where requirements frequently change. In XP,
developers initially document requirements
through user stories, which are basically textual
use-case descriptions (see the “Common XP Terms”
sidebar). To clarify these requirements and set pri-
orities, XP uses an on-site customer representative
who works with the team.

This practice improves the software’s business
value: When issues arise, programmers can get
customer input immediately rather than speculate
on customer preferences. This also lets customers
change requirements on very short notice—thereby
helping the team flexibly refocus development
efforts on the most pressing needs.

Small releases. Given that requirements change
often, XP keeps release cycles short and ensures
that each release produces a useful software sys-
tem that generates business value for the customer.
Short cycles reduce customer risk, letting the cus-
tomer quickly terminate projects that fail to deliv-
er business value. A short release cycle also helps
developers deal with changing requirements and
reduces the impact of planning errors.

Software Quality
XP employs various practices to keep software
quality high. Although some might appear unusu-
al, their combined effects ensure that the team
maintains high quality without slowing down the
development process.

Metaphor. A metaphor represents a coherent view
of the system that makes sense to both the busi-
ness and technical sides and represents “what we
are trying to do.” The metaphor is sometimes
embodied in a single user story that portrays this
idea and gives everyone the system basics. In a
sense, the metaphor serves as the high-level soft-
ware architecture.

Testing. Software testing — specifically, automated
regression testing—is a key part of XP. The cus-
tomer defines functional (acceptance) tests, which
the development team implements. From a busi-
ness perspective, these tests verify that the pro-
gram does what it is supposed to do. According to
the XP philosophy, a feature lacking automated
tests does not exist.

In XP, programmers write unit tests before
they write actual code. Writing test drivers before
writing the code forces software developers to
think about the problem before programming.
The test drivers thus serve as a detailed specifi-
cation of the method’s functionality. This is also
one of the intentions of up-front design. The XP
team can also use test drivers later to see if the
system exhibits the proper functionality after the
code is written. They can’t do this with paper-
based documentation.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 87

Extreme Programming

Table 1. Productivity gains with XP

NLOC/effort #methods/effort #classes/effort

Average Pre-XP 10.2 0.36 0.05
Average XP 17.0 1.45 0.21
Percent Change 66.3 302.1 282.6

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 27,2020 at 11:16:10 UTC from IEEE Xplore. Restrictions apply.

Simple design.Agile software processes assume that
requirements are always changing, the future is
uncertain, and the costs of change are not exponen-
tial. Hence, the most cost-effective development
approach should focus on solving today’s problems
rather than designing for future changes. In XP, the
best software design runs all the test drivers, has no
code redundancies, has the fewest possible classes
and methods, and is easy to understand. XP does not
invest in up-front analysis and design. It trades the
potential savings of anticipating change against that
of wrongly guessing the system’s future direction.

Keeping the software design as simple as possi-
ble improves a team’s ability to work productively
with minimal documentation beyond the source
code. When source code is easy to understand,
there is no need to document its structure at a
higher level of abstraction.

Refactoring. All software deteriorates over time: A
once-clean design becomes progressively fuzzier
with each change. However, when a software system
has minimal documentation, the source code must
remain simple and easy to understand. To accom-
plish this, programmers refactor the code base. That
is, they change the code’s structure to improve its
understandability and maintainability, without
changing its functionality.3 Once a feature is com-
plete, the programmer must ensure that the existing
structure is the simplest way to run all the tests. If
not, the code must be refactored and simplified.

Automated test drivers ease refactoring efforts
by giving programmers feedback after they change

the code. If the changes work, they become part of
the next baseline. If they don’t, the programmer
can fix or reverse them right away.

XP uses patterns, but it does so according to a
simple idea: Rather than implement with patterns,
developers should “refactor to patterns when appro-
priate and away from patterns when something sim-
pler is discovered.”8 Constant refactoring ensures
that the design is always as simple as possible.

Pair programming. In XP, all production code is writ-
ten by two people working at one machine. One per-
son controls the keyboard and the mouse, and focus-
es on broad issues such as whether this approach will
work and whether it can be simplified further. The
other person thinks more strategically and decides if
this is the best way to implement the functionality.
The pair switches roles frequently throughout the day.

Managers often object to pair programming on
the grounds that it doubles a project’s program-
ming costs. However, in their controlled experi-
ment measuring pair-programming overhead,
Williams and colleagues found that it takes only
approximately 15 percent more effort than solo
programming, but increases both software quality
and programmers’ job satisfaction.9 (In situations
where pair programming is unacceptable, teams
might consider replacing it with software mea-
surements and inspections.10)

Project Management
To ease the project-management burden, XP
includes practices aimed at reducing management
overhead, while keeping the customer’s interest at
close range.

The planning game. To chart the next release’s
scope, XP uses the “planning game,” that takes
both business priorities and development team
realities into account. Business interests can be
represented by various people, including market-
ing personnel or a customer’s employee. All that
matters is that whoever it is has the required
knowledge to decide

� Scope and priority. What are the required sys-
tem features? Which features are most impor-
tant and must be added now? Which features
can be postponed?

� Release date. When must the next release be
available?

Obviously, to make such decisions, businesspeople
need information from developers. Among the

88 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

� User stories:use cases that briefly capture functional requirements.
Developers typically write stories on index cards to describe each
system task that the customer desires. Ideally, it should take a team
one to five engineering weeks of effort to implement the tasks each
story implies. Stories should be testable.

� Customer: a role on the development team; the customer chooses
which stories the system must satisfy and the order in which to
implement them.The customer also defines acceptance tests to verify
that the stories function correctly.

� Unit tests: tests written from the programmer’s perspective to
identify possible system malfunctions.The team keeps all unit tests
running all the time: Nothing is integrated into the baseline if a unit
test fails. If a bug is encountered, the team first writes a unit test that
shows the problem, and then fixes it.

� Functional/acceptance tests: tests from the customer’s perspective
that ensure that the system correctly implements a user story.

Common XP terms

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 27,2020 at 11:16:10 UTC from IEEE Xplore. Restrictions apply.

technical side’s responsibilities are

� Estimates. How much effort is required to
implement a new feature or fix a bug? How
much work can be put into the next release?

� Consequences. How will various business deci-
sions impact the development process and
development effort?

� Process. How will the team work together and
be organized?

To estimate effort, XP uses ideal engineering time
(IET), which measures a task’s difficulty or com-
plexity, and velocity, which determines how many
IET points a team can use within a set time peri-
od. The team determines velocity based on past
experience. For example, if the last release’s team
got x IETs done in two weeks, they would set that
as the mark for the new release as well.

The planning game’s goal is to balance cus-
tomer interests with the expertise of the develop-
ment team. The team estimates task effort, while
the customer picks the tasks for the next iteration,
constrained only by the team’s velocity.

Sustainable development. According to XP phi-
losophy, no one can work 60-hour weeks consec-
utively without affecting product quality. As Kent
Beck put it:

I want to be fresh and eager every morning, and
tired and satisfied every night. On Friday, I want to
be tired and satisfied enough that I feel good about
two days to think about something other than work.
Then on Monday I want to come in full of fire and
ideas.1

Although management or customers can push a
team to work long overtime hours, the result is
usually reduced quality, burned-out developers,
and a high turnover rate.

Collective ownership. In XP, the team members
collectively own the code base. Anyone who can
add value to any portion of the code at any time
is required to do so. This practice succeeds in part
because of the automated test suite: Programmers
will get feedback on any code they modify to see if
it works or not. Having automated test drivers lets
programmers modify the code more freely and
with less fear of unknown repercussions.

Coding standards. Because developers program
different parts of the system with various team

members, coding standards are a must. A coding
standard makes the code easier to understand and
improves consistency among team members. The
standard should be easy to follow and adopted
voluntarily.

Continuous integration. Developers should inte-
grate code as often as possible, and at least once
a day. This ensures that there is always an exe-
cutable system version available that contains
all new features and can serve as the baseline for
all work.

A good way to do continuous integration is to
dedicate a machine, letting pair programmers take
turns integrating and testing their code. If the tests
fail, the pair can undo their changes and work on
their code until it passes all the tests.

Conclusion
XP’s 12 core practices are closely related, and
implementing only a few will not necessarily bring
all potential benefits. For example, you cannot
have people modifying the entire code base with-
out automated test drivers in place. On the other
hand, some practices can be adopted in any case;
automated test drivers and continuous integration
will help any software development project.

Obviously, applying all these practices as the lit-
erature suggests is sometimes difficult. Having a
full-time on-site customer is sometimes impracti-
cal, for example, but having one part-time cus-

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 89

Extreme Programming

XP Resources on the Web

Much of the information on agile software processes and XP is available
online. In the following,we list some major Web resources. (All sites were
current as of 11 Dec. 2001.)

� Agile alliance manifesto • http://www.agilealliance.org.
� Agile modeling homepage • http://www.agilemodeling.com.
� Extreme Programming • http://www.extremeprogramming.org.
� Extreme Programming Roadmap • http://www.c2.com/cgi/wiki?

ExtremeProgrammingRoadmap.
� Martin Fowler’s articles • http://martinfowler.com/articles.html.
� XP Developer • http://www.xpdeveloper.com.
� Xprogramming.com • http://www.xprogramming.com.
� XP Universe conference program and papers: http://www.xpuniverse.

com/xpuPapers.htm.
� XP 2000 conference program and papers • http://ciclamino.dibe.

unige.it/xp2000.
� XP 2001 conference program and papers • http://www.xp2001.org/

xp2001/conference/program.html.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 27,2020 at 11:16:10 UTC from IEEE Xplore. Restrictions apply.

tomer and good telecommunication can be sufficient
to achieve the constant communication that makes or
breaks an XP project.

Overall, XP is an agile software process that speeds
up development and lets teams react flexibly to
requirement changes, but some issues remain.
Although there is much anecdotal evidence on its
benefits, hard quantitative data is only sparsely avail-
able. Another issue is the scalability of the process:
Aside from Kent Beck’s recommendation of 5 to 15
people, we don’t really know how big a team can get
before XP breaks.

References
1. K. Beck, Extreme Programming Explained: Embrace Change,

Addison Wesley Longman, Reading, Mass., 2000.
2. K. Beck and M. Fowler, Planning Extreme Programming, Addi-

son Wesley Longman, Reading, Mass., 2001.
3. M. Fowler et al., Refactoring: Improving the Design of Existing

Code, Addison Wesley Longman, Reading, Mass., 1999.
4. M. Beedle and K. Schwaber, Agile Software Development with

Scrum, Prentice Hall, Upper Saddle River, N.J., 2001.
5. A. Cockburn, Agile Software Development, Addison Wesley

Longman, Reading, Mass., 2001.
6. J. Highsmith, Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems, Dorset House, New
York, 2000.

7. F. Maurer and S. Martel, “On the Productivity of Extreme Pro-
gramming: An Industrial Case Study,” draft paper; available at
http://sern.ucalgary.ca/~milos/Library.htm (current 11 Dec.
2001).

8. J. Kerievsky, “Refactoring to Patterns,” draft paper; available
at http://industriallogic.com/papers/rtp110.pdf (current 11 Dec.
2001).

9. L. Williams et al., “Strengthening the Case for Pair Program-
ming,” IEEE Software, vol. 17, no. 4, July-Aug. 2000.

10. J. Zettel et al., “LIPE: A Lightweight Process for E-Business
Startup Companies Based on Extreme Programming,” Proc.
Third Int’l Conf. Product-Focused Software Process Improve-
ment (PROFES 2001), Springer Verlag, Berlin, 2001.

Frank Maurer is an associate professor in computer science at the

University of Calgary, Canada, where he is the head of the e-

Business engineering group. His research interests include agile

software processes, process support for virtual software cor-

porations, and knowledge management. He is on the editorial

boards of IEEE Internet Computing and Electronic Transactions

on AI Semantic Web, and is a member of the IEEE Computer

Society and the ACM. More information is available at

http://sern.ucalgary.ca/~maurer.

Sebastien Martel is a graduate student in computer science at the

University of Calgary, Canada. His research interests include

agile software processes, process support for virtual software

corporations, and artificial intelligence.

Readers can contact the authors at {maurer,smartel}@cpsc.

ucalgary.ca.

MOBILE AND UBIQUITOUS SYSTEMS

NEW FOR 2002,
the IEEE Computer
and Communications
Societies present

IEEE
Pervasive
Computing
This new quarterly magazine aims

to advance pervasive computing by

bringing together its various

disciplines, including

• hardware technology;

• software infrastructure;

• real-world sensing and interaction;

• human–computer interaction; and

• systems considerations such as

scalability, security, and privacy.

Led by Editor in Chief

M. Satyanarayanan, the founding

editorial board features leading

experts from UC Berkeley,

Stanford, Sun Microsystems,

and Intel.

Don’t miss the
premier issue —
Subscribe Now!

http://computer.org/pervasive

Authorized licensed use limited to: University of Pittsburgh. Downloaded on February 27,2020 at 11:16:10 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

