Manuscript

Click here to download Manuscript study-software-reuse.pdf

A Study of Software Reuse in Cross-Platform Mobile Application
Development

Tajammul Shah and Zaheer Ahmad

Abstract— The rapid growth of the mobile application market
and the increasing popularity of the three major mobile plat-
forms (Android, iOS and Windows Phone) has forced the mobile
application developers to move to cross-platform mobile appli-
cation development. However, this shift has also increased the
resources and effort required to develop a mobile application.
To minimize this increase, different approaches are adopted
by the developers for cross-platform application development.
These approaches enable the developers to reduce the required
cost and effort by introducing wide extent of software reuse.
This paper focuses on the study of software reuse in the different
approaches adopted in cross-platform application development
and the limitations of those approaches.

I. INTRODUCTION

Over the past few years, the highly increasing popularity
of smartphones has attracted the attention of the software
community [1]. Now most of the businesses and individual
developers consider the mobile applications market as their
primary target. However, this market is not relying on a
single mobile platform. In fact, there are a number of
different mobile platforms available three most popular are
Android, i0OS and Windows phone. There are currently about
1,600,000 applications on the Google Play Store (Android
market), 1,500,000 applications on the Apple App Store and
340,000 applications on Windows Phone Store [2]. Because
of this popularity, the mobile applications development com-
munity mostly targets all of these major mobile platforms
for the success of their applications. The approach to the
development of mobile applications that can be used on
multiple mobile platforms is called cross-platform mobile
application development and has currently become very
popular [3]. However, due to the differences in the mobile
platforms, the developers need to build a single application
multiple times in order to target multiple mobile platforms.
This approach results a huge increase in the development
and maintenance cost [6], [13], [14] and also increases the
software engineering effort needed to develop the application
[12].

To address this issue, different approaches are used for
cross-platform applications development e-g web-based ap-
plications development and hybrid applications development.
These approaches provide a singular development environ-
ment and the resultant application can be run on multiple
platforms, thus introduce a wide extent of software reuse

The authors are with the Department of Computer Software Engineering,
Military College of Signals, National University of Sciences & Technology
Islamabad, Pakistan.

E-mail: {tajammulshah, zaheerahmad}.mscs22 @students.mcs.edu.pk

and therefore, greatly reduce the cost and effort required for
the development and maintenance [4], [16]. However, apart
from these advantages, these approaches also have some
limitations that make the use of these approaches limited to
specific range of applications. These limitations are discussed
in detail, later in this paper.

Our paper focuses on the study of software reuse in the dif-
ferent approaches adopted for cross-platform mobile applica-
tions development. Our study is based on the three different
approaches; Native Application Development (NAD), Web-
based Application Development (WAD) and Hybrid Appli-
cation Development (HAD). We also discuss the strengths
and weaknesses of each of these three approaches.

II. RELATED WORK

Much research work can be found related to cross-platform
mobile application development. For example, three different
approaches used for cross-platform application development
are identified that are Native Application development, Web-
based Application Development and Hybrid Application De-
velopment [13], [5], [6], [10], [11] and a detailed compar-
ison of these approaches is also presented. For the hybrid
applications development, different tools and frameworks
are used e-g Phonegap, Xamarine, Appcelerator Titanium
and Corona etc. A number of articles can be identified that
discuss, compare and evaluate these tools and point out the
advantages and disadvantages of each of these tools and
frameworks [4], [7], [8], [13], [22]. As in cross-platform
application development, different platforms have different
requirements for development, for example, different pro-
gramming languages, software development kits (SDKs) and
different integrated development Environments (IDEs), code
reuse is a big challenge in cross-platform application devel-
opment [10], [11]. Although in single-platform application
development (e-g Android), software reuse can be achieved
to a wide extent [9].

III. CROSS-PLATFORM MOBILE APPLICATION
DEVELOPMENT

Cross-platform mobile application development is the
approach to the development of mobile applications that
can be used on multiple mobile platforms. Cross-platform
application development is becoming very popular because
the mobile application market has split among several mobile
platforms with the majority shares among Android, iOS and
Windows Phone [2]. Therefore, the developers do not rely
on a single mobile platform and rather target multiple mobile

*

http://www.editorialmanager.com/ijseke/download.aspx?id=24777&guid=f0d70d36-0f68-45bc-90bf-aa6599f9adba&scheme=1
http://www.editorialmanager.com/ijseke/download.aspx?id=24777&guid=f0d70d36-0f68-45bc-90bf-aa6599f9adba&scheme=1

platforms for the success of their applications. However,
this also increases the resources and effort required in the
development, testing and maintenance of the applications
[10]. For cross-platform mobile application development,
three different approaches are adopted: Native Application
Development (NAD), Web-based Application Development
(WAD) and Hybrid Application Development (HAD) [10],
[13], [15]. Each of these approaches is discussed as follows.

A. Native Application Development

Native application development involves developing the
application on a native mobile platform, which can be
Android, iOS or Windows Phone. Thus to target multiple
platforms, a separate application is developed for each plat-
form. Developing a native application requires specific pro-
gramming language for example, Java is used for Android,
Objective C or Swift is used for iOS and C# is used for
Windows Phone applications development. It also requires
platform specific IDEs for example, Android Studio is the
officially used IDE for Android applications development
[19], Xcode is used for i0OS [20] and Microsoft Visual Studio
is used for developing applications for Windows Phone [21].
The main advantage of native applications is the high per-
formance [17]. Native applications are compiled into ma-
chine code, which results in the best possible performance.
Therefore, native applications offer the best graphics and
animations and are suitable for highly graphical applications
such as games [18]. Another advantage is that native ap-
plications provide full access to the hardware e-g camera,
accelerometer, microphone, GPS and gyroscope sensors of
the device. Moreover native applications also provide the
richest user experience [6].

Disadvantages of the NAD approach include increased cost
and time for development and maintenance [18], [17], [13],
[6], [14]. The reason is that for each platform the developer
has to learn specific programming language, SDK and IDE

DfoEbchﬁkgr D E\E/!}. oP DE\(LEVL. op The hybrid approach
consolidates
development and
testing into one
streamlined project.

TEST TEST TEST
BUILD BUILD BUILD

(Xcode) (Eclipse) (Eclipse)

Both approaches result
in native applications
with comparable
performance and
capabilities.

BUILD

(Xcode)

as well as maintain a separate code base for each platform.
Another disadvantage is the lack of portability in native
applications because each application is developed for a
specific platform and cannot be used on any other platform
[18]. Besides these disadvantages, the NAD approach is the
most common approach adopted by the developers [10].

B. Web-based Application Development

Web-based applications or Mobile-web applications are
browser-based applications that are developed using the
HTML and JavaScript technologies [6]. These applications
are downloaded from the web and require a web browser to
run. No application related components are installed on the
device and the application’s data is server driven.

The main advantage with web-based applications is that they
can be accessed from all devices via the platform’s browser
[5] and therefore, are not confined to a single platform only.
This greatly reduces the cost and effort for development and
maintenance as only a single application can be used on
all platforms. Another advantage is that these applications
do not require app store submission [15], so the developer
does not have to wait for long approval process (mainly an
issue with Apple app store submission). Also in web-based
applications, the data and the application is hosted on a server
so maintenance can be done remotely on the server.

The disadvantages of the web-based applications include
limited or no access to the APIs that can access device’s data,
storage, camera and other sensors [6], [15]. However, the
recent adoption of HTMLS standard provides access to the
device’s hardware and software components through some
APIs. Another disadvantage is the extra rendering time that
can affect the user experience. Also there are some situations
where the mobile-web applications are inaccessible for the
end user e-g when the device is in Airplane mode [6].

DEVELOP

(HTML, CSS, JS)

DEVELOP

(HTML, CSS, JS)

TEST TEST
The web-based
approach creates a

BUILD BUILD web application that is RELEASE

(Eclipse) (Eclipss) (Internet)

released via the Internet
instead of an app store.

Web-based applications
are restricted to the
browser and have
limited access to device

features.

Fig. 1: Hybrid applications are closing the gap between native and web-based application development.

C. Hybrid Application Development

The hybrid application development approach is a cross
between the NAD and the WAD approaches [18]. In this
approach, HTMLS5 and JavaScript are used as development
technologies and no detailed knowledge of the target
platform is required. A hybrid application is generally a
mobile-web application embedded inside a native container
(like UIWebview in iOS and Webview in Android) [6]. Like
native applications, the hybrid applications must be installed
on the device and therefore are also subjected to app store
submission [18]. Different tools and frameworks are now
available that support hybrid applications development e-g
PhoneGap, Appcelerator Titanium, Sencha, Xamarin and
Corona etc. A detailed analysis of these tools is available
in a number of articles e-g [8], [13], [22], [5]. Fig. 1
shows how hybrid applications close the gap between
native and web-based applications. In the NAD approach,
three different applications are developed from scratch
to support the three different mobile platforms. Whereas
in the WAD approach, a single application developed is
run on all the three platforms. In case of HAD, a single
application is developed and tested, like the WAD approach,
but built separately for each platform like the NAD approach.

Hybrid applications combine the advantages of both
native and web-based applications. Like native applications
they provide full access to the device’s hardware and
data [6], [15], [18]. Like web-based applications, a single
application is developed using web technologies and can be
deployed on multiple platforms by just wrapping it inside a
platform specific shell. This reduces the cost and effort.

The disadvantages of hybrid applications include greater
processing time as compared to native applications and also
the lack of native look and feel. Moreover these applica-
tions can also suffer from the platform specific behavior
of JavaScript and threading model incompatibilities with
JavaScript. Fig. 2 shows a side by side comparison of native,
web-based and hybrid applications.

IV. SOFTWARE REUSE IN CROSS-PLATFORM MOBILE
APPLICATION DEVELOPMENT

Software reuse is the process of using existing software
components to create new software systems and it facilitates
the increase of productivity, quality, reliability and the de-
crease of cost and implementation time. While code is the
most common reusable component, other components and
assets produced during the software development process
can also be reused e-g software designs, specifications,
prototypes, tests cases, data, frameworks, and documentation
etc.

In mobile applications development, software reuse can be
achieved to a wide extent in the case of single-platform
application development. In an empirical study conducted
for analyzing software reuse in Android applications, three
different types of software reuse were identified as, inheri-
tance reuse, code reuse and framework reuse of whole apps

_ Native App Mobile Web App Hybrid App

o HTML SIHTMU

* Objective-C . CSS * CSS
Skills/tools needed for ¢ Java . * Javascript
cross-platform app o CH+ 0 FEEAIR » Web programming
development o CH O i (g i language (i.e., Java)
* VB.net :Zc;age (=Y * Mobile development
framework
Apps needed to reach
all major smartphone 4 1 1
platforms
Installed on device? Yes No Yes

Distribution App Store/Market Internet App Store/Market

Full integration:
(camera, microphone,
GPS, gyroscope,
accelerometer, file
upload, contact list)

Partial integration:
(GPS, gyroscope,
accelerometer, file
upload)

Full integration:
(camera, microphone, GPS,
gyroscope, accelerometer,

file upload, contact list)

Device integration

* Highly graphical
apps

* Apps that need to
reach a large
consumer audience

» Cross-platform apps
that need full device
access.

* Business apps that need
app store distribution

« Data-driven apps

* B2B apps

® Internal business
apps

Best used for

Fig. 2: Side by side comparison of native, web-based and
hybrid applications [18]

[9]. The study was carried out on hundreds of thousands
of Android applications across thirty different categories.
The results show that about 18.75% of Android application
classes inherit from a base class in the Android API and
35.78% of the classes inherit from a domain-specic base
class; 84.23% of classes across all categories of applications
occur in two or more applications and 17,109 applications
were a direct copy of another application. This means that
in the case of single platform application development, the
application developers perform significant software reuse,
despite the lack of formal software engineering training.
However, the problem arises in the case of cross-platform
application development, where the application is built for
different platforms using different programming languages,
SDKs and IDEs. This difference in the development re-
quirements for different mobile platforms makes the soft-
ware reuse a big challenge in cross-platform applications
development. This section focuses on the study of software
reuse in cross-platform application development. As three
different approaches are adopted for cross-platform applica-
tions development (i-e NAD, WAD and HAD), we must first
discuss how much software reuse is possible in each of these
approaches and then their limitations and alternatives.

A. Software Reuse in NAD

In native applications development approach, a single
application is developed multiple times to support multiple
mobile platforms. According to a survey, most of the de-
velopers see the multiple platform application development
as a big challenge in mobile applications development [10].
The survey says that most of the developers write the same
application from scratch for each platform and often find
it impossible or challenging to port functionality across
different mobile platforms. The survey shows that it is almost

impossible to achieve code reuse in cross-platform applica-
tion development because each mobile platform has different
requirements for development e-g programming language,
development environment etc. Even if the programming
languages may be the same (e-g Android and Blackberry
both use Java for application development), different mobile
platforms work in different ways and the code is often written
from scratch. If any portion of the code is reused across
different platforms, it does not generate quality results.

Besides the code reuse, the user interface (UI) design is also
a big challenge in cross-platform application development.
This is due to the difference in the HCI guidelines across
different mobile platforms. Thus the developers have to carry
out a screen by screen design for each platform separately
to preserve the behavioral consistency across multiple plat-
forms. Similar is the case with the testing phase also, where
separate testing is performed for each platform to test the
flow and the behavior of the application on each platform.
Although the test cases may be the same for each platform
but they must be implemented uniquely on each platform. In
the maintenance phase also, a lot of cost and effort is required
to maintain a separate application for each platform. So in
the NAD approach, there is no or very little software reuse,
which greatly increases the time, effort and budget required
for the development and maintenance of an application.

B. Software Reuse in WAD

In web-based applications, a single application is devel-

oped in web technologies like HTML and JavaScript and
used across multiple mobile platforms. This approach may
be considered as a solution to the reuse problem in the
native applications. The web-based applications can provide
complete software reuse across different mobile platforms
as they are platform independent and once developed, they
can be used on multiple platforms via the platform browser.
This approach is based on write once and run everywhere.
In the WAD approach, only a single application is designed,
developed, tested and released, that can, then, be used
across multiple platforms without any changes required in
the design and implementation. This also results in an easy
maintenance of the application.
Though in terms of software reuse, the WAD approach is far
more better than the NAD approach but still it carries some
technical disadvantages (as discussed in Section III.B.) and
is not a choice of most of the developers [10].

C. Software Reuse in HAD

The hybrid application development approach is consid-
ered as a bridge to fill the gap between the NAD and the
WAD approaches. This approach provides full software reuse
(which is a problem in native applications) as well as tries to
overcome the disadvantages of web-based applications (e-g
lack of hardware access and lower performance).

As a hybrid application is generally a web-based application
wrapped in a native shell, it combines the advantages of
both native and web-based applications. Like web-based

applications, a single application is developed and its func-
tionality is tested. After successful testing the application
is then wrapped in a separate platform-specific native shell
and built for each platform. Thus all the assets of an ap-
plication are reused across all the platforms. Also wrapping
the application in a native shell gives it somewhat native
look and feel and better performance as compared to web-
based applications. Therefore, the HAD approach can be
considered as the best solution both in terms of software
reuse and technical capabilities (such as full hardware access
and better performance). This approach is also cost and time
efficient as compared to the NAD approach and also easy
to maintain. This is the reason that the popularity of the
HAD approach is rapidly increasing among the developers
as compared to native and web-based approaches [23].

D. Limitations and Alternatives

The above discussed approaches (i-e WAD and HAD)
have some limitations (such as performance, user experience
and hardware access) and are technological solutions to
the software reuse problem in the NAD, rather than the
desired software engineering approach to reuse early soft-
ware engineering assets [12]. Therefore the researchers are
trying to propose a software engineering solution that can
achieve both the advantages of native applications as well as
software reuse across multiple platforms in cross-platform
applications development. One such proposed solution is the
Model-Driven Mobile Development [24], [25], [26].
Model-driven development fits as a nice solution to the
problem of cross-platform mobile applications development.
In model driven development, the development of substan-
tial parts of a program is based on models. Source code
is generated from automatic transformations of developer-
defined models. There can also be several transformations
that generate code for different target platforms. Application
developers describe their application on a relatively high
level and this description is translated into code for different
mobile platforms. In model-driven application development
there is not only a single, cross-platform code base (i-e
the model) but also an increased abstraction level and fast
development cycles. Generated applications are truly native
and do not suffer from any of the issues that the Web-based
approaches do with respect to native look & feel.

V. CONCLUSION

With the increasing demands of the mobile application
market and the distribution of the market shares among
different platforms, developers are switching towards cross-
platform mobile applications development. As the majority
of market shares belong to three different mobile platforms
(Android, iOS and Windows Phone), developers mainly
target these three platforms for the success of their mobile
applications. However due to the differences in the program-
ming languages, SDKs and IDEs, cross-platform application
development is a big challenge in the mobile applications
development.

The aim of this paper was to study the different approaches

used in the cross-platform application development and to
discuss software reuse in each of these approaches along
with their limitations. Our study concluded with the result
that though native application development approach is the
best in terms of end user experience and technical capabilities
(such as full hardware access and best performance), it is not
a good choice in terms of software reuse. The NAD approach
can achieve software reuse to a small extent, almost no soft-
ware reuse. The alternative solution to the NAD approach is
the web-based application development approach. Although
this approach provides full software reuse across multiple
mobile platforms, it is not considered as a good solution
because of the technical weaknesses such as lack of hardware
access and lower performance. The currently best approach
for cross-platform application development may be the HAD
approach which combines the advantages of both native and
web applications. Like web-based applications, this approach
enables full software reuse across different mobile platforms
and provides better performance and full hardware access
like native applications. However, these solutions are the
technological solutions rather than a software engineering so-
lution. One software engineering solution for the problem of
cross-platform application development is the Model-Driven
Mobile Development. This approach bases the development
on models and these models are then translated into source
code. The model-driven approach enables software reuse as
there is a single code base (i-e the model) that can be reused
across multiple mobile platforms. Moreover the applications
developed using this approach are truly native and are far
superior to the web-based approaches.

REFERENCES

[1] D. Bosomworth, "Mobile marketing statistics 2015”, Smart Insights,
2015. [Online]. Available: http://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics.
[Accessed: 08- Nov- 2015].

[2] Statista, “Number of apps available in leading app
stores 2015 — Statistic’, 2015. [Online]. Available:
http://www.statista.com/statistics/276623/number-of-apps-available-
in-leading-app-stores. [Accessed: 08- Nov- 2015].

[3] K. Shah, “The Rise of the Cross Platform App Development
Market”, Enterprisecioforum.com, 2015. [Online]. Available:
http://www.enterprisecioforum.com/rise-cross-platform-app-
development-mark. [Accessed: 08- Nov- 2015].

[4] Hartmann, Gustavo, Geoff Stead, and Asi DeGani. ”Cross-platform
mobile development.” Mobile Learning Environment, Cambridge
(2011).

[5] Heitktter, Henning, Sebastian Hanschke, and Tim A. Majchrzak.
”Evaluating cross-platform development approaches for mobile appli-
cations.” In Web information systems and technologies, pp. 120-138.
Springer Berlin Heidelberg, 2013.

[6] Xanthopoulos, Spyros, and Stelios Xinogalos. ”A comparative analysis
of cross-platform development approaches for mobile applications.”
InProceedings of the 6th Balkan Conference in Informatics, pp. 213-
220. ACM, 2013.

[7] Corral, Luis, Andrea Janes, and Tadas Remencius. ”Potential advan-
tages and disadvantages of multiplatform development frameworksa
vision on mobile environments.” Procedia Computer Science 10
(2012): 1202-1207.

[8] Dalmasso, Isabelle, Soumya Kanti Datta, Christian Bonnet, and Navid
Nikaein. ”Survey, comparison and evaluation of cross platform mobile
application development tools.” In Wireless Communications and
Mobile Computing Conference (IWCMC), 2013 9th International, pp.
323-328. IEEE, 2013.

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mojica, Israel J., Bram Adams, Meiyappan Nagappan, Steffen Dienst,
Theodore Berger, and Ahmed E. Hassan. ”A large-scale empirical
study on software reuse in mobile apps.” Software, IEEE 31, no. 2
(2014): 78-86.

Joorabchi, Mona Erfani, Ali Mesbah, and Philippe Kruchten. “Real
challenges in mobile app development.” In Empirical Software Engi-
neering and Measurement, 2013 ACM/IEEE International Symposium
on, pp. 15-24. IEEE, 2013.

Wasserman, Anthony I. ”Software engineering issues for mobile
application development.” In Proceedings of the FSE/SDP workshop
on Future of software engineering research, pp. 397-400. ACM, 2010.
Dehlinger, Josh, and Jeremy Dixon. ”"Mobile application software
engineering: Challenges and research directions.” In Workshop on
Mobile Software Engineering, vol. 2, pp. 2-2. 2011.

Adam M. Christ, "Bridging the Mobile App Gap,” Inside the Digital
Ecosystem, 11, no. 1 (2011): 28.

Kony, “RES-Glossary-Cross-Platform-Mobile-Development”, 2013.
[Online]. Available: http://www.kony.com/resources/glossary/cross-
platform-mobile-development. [Accessed: 01- Dec- 2015].

Amatya, Suyesh. ”Cross-Platform Mobile Development: An Alterna-
tive to Native Mobile Development.” (2013).

S. Jones, ”Cross-Platform Developer Tools 2012 -
VisionMobile”, VisionMobile, 2012. [Online]. Auvailable:
http://www.visionmobile.com/blog/2012/02/crossplatformtools/.
[Accessed: 30- Nov- 2015].

A. Ziflaj, "Native vs Hybrid App Development”, SitePoint, 2014.
[Online]. Available: http://www.sitepoint.com/native-vs-hybrid-app-
development/. [Accessed: 30- Nov- 2015].

Michaels, ross & cole, 1td, Native mobile apps: The wrong choice for
business? A white paper from michaels, ross & cole, Itd. (mrc).

A. Overview, “Android Studio Overview — Android
Developers”, Developer.android.com, 2015. [Online]. Available:
http://developer.android.com/tools/studio/index.html. [Accessed: 15-
Dec- 2015].

Developer.apple.com, ”Xcode - IDE - Apple Developer”, 2015. [On-
line]. Available: https://developer.apple.com/xcode/ide/. [Accessed:
15- Dec- 2015].

Msdn.microsoft.com, ”Getting started developing apps
for ‘Windows Phone 8 and Windows 8”7, 2015.
[Online]. Available: https://msdn.microsoft.com/en-
us/library/windows/apps/jj714071(v=vs.105).aspx. [Accessed: 15-
Dec- 2015].

Ribeiro, Alejandro, and Airton R. da Silva. ”Survey on Cross-
Platforms and Languages for Mobile Apps.” In Quality of Information
and Communications Technology (QUATIC), 2012 Eighth Interna-
tional Conference on the, pp. 255-260. IEEE, 2012.

D. Ramel, "Mobile Report: Native Development Trails Web,
Hybrid — ADTmag”, Adtmag.com, 2015. [Online]. Available:
https://adtmag.com/articles/2015/04/27/mobility-survey.aspx.
[Accessed: 01- Dec- 2015].

Vaupel, Steffen, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh,
Ren Gerlach, and Michael Guckert. "Model-driven development of
mobile applications allowing role-driven variants.” In Model-Driven
Engineering Languages and Systems, pp. 1-17. Springer International
Publishing, 2014.

Balagtas-Fernandez, Florence T., and Heinrich Hussmann. “"Model-
driven development of mobile applications.” In Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Confer-
ence on, pp. 509-512. IEEE, 2008.

Heitktter, Henning, Tim A. Majchrzak, and Herbert Kuchen. ”Cross-
platform model-driven development of mobile applications with md
2.7 In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pp. 526-533. ACM, 2013.

