Software Process

Alfonso Fuggetta
Politecnico di Milano and CEFRIEL
Via Fucini, 2
20133 Milano - ltaly
alfonso.fuggetta@polimi.it

ABSTRACT

This paper is a travelogue of Software Process research and
practice in the past 15 years. It is based on the paper writ-
ten by one of the authors for the FOSE Track at ICSE 2000.
Since then, the landscape of Software Process research has
significantly evolved: technological breakthroughs and mar-
ket disruptions have defined new and complex challenges for
Software Engineering researchers and practitioners.

In this paper we provide an overview of the current sta-
tus of research and practice, highlight new challenges, and
provide a non-exhaustive list of research issues that, in our
view, need to be tackled by future research work.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—software
process models, life cycle, programming teams

General Terms

Management, Performance, Human Factors.

Keywords

Software Process, Software Development, Agile Software De-
velopment, Software Development Environments, Social Fac-
tors in Software Development, Empirical Studies.

1. INTRODUCTION

Year after year, software has become an increasingly es-
sential and vital constituent of our society. There is no busi-
ness sector or aspect of our daily life that is not affected by
software. Personal and work activities, business and eco-
nomic initiatives, civil and industrial infrastructures, poli-
tics, education, and entertainment — just to name a few —
are all deeply permeated and governed by software
applications and systems. Consequently, software de-
velopment has become a critical activity that needs to be
carefully studied, understood, improved, and supported.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FOSE’14,May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2865-4/14/05...$15.00
http://dx.doi.org/10.1145/2593882.2593883

Elisabetta Di Nitto
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano - ltaly

elisabetta.dinitto@polimi.it

Over the past half of a century, the goal of the Software
Engineering community has been to study and tackle these
issues and problems. Within this community, Software
Process research has focused on understanding, describ-
ing, evaluating, automating, and improving the procedures,
policies, and techniques used to master this complex en-
deavor. This research work has produced many interesting
results. At the same time, however, many goals and objec-
tives have been ill-framed or overemphasized, while others
have been overlooked. Certainly, many problems are still in
search of convincing approaches able to thoroughly address
and tackle them.

The term Software Process gained major visibility in the
eighties and since then has sparked a lot of projects and ini-
tiatives in different areas: modeling, automation, improve-
ment to name a few. At ICSE 2000, one of the authors wrote
a paper about the achievements, mistakes, and open chal-
lenges of this research area [18]. The paper was presented
in the FOSE (Future of Software Engineering) Track. Since
then, a lot has happened. The Internet has redefined all as-
pects of our society. Mobile devices have radically changed
the way citizens and companies approach Information and
Communication Technologies (ICTs). Totally new sectors
and markets have been created from scratch (e.g., social
networks). Existing approaches to software development
and software distribution have been completely transformed
by the advent and wide diffusion of concepts such as open
source software development, agile methods, and develop-
ment platforms for mobile applications. Consequently, it
does make sense to reconsider the state of the Software Pro-
cess research community, to critically revise the way it has
dealt with the issues and opportunities identified in year
2000 and, at the same time, to discuss how it is coping with
the new challenges and deep transformations that have oc-
curred over the past 15 years.

This paper has the ambition to discuss these issues and to
provide some contributions for the evolution and strategic
development of the community. To pursue this goal, the
paper is organized as follows:

e Section 2 summarizes the main comments proposed in
the FOSE 2000 Paper.

e Section 3 provides a quick overview of the main trends
and directions in software process research over the
past decade.

e Section 4 highlights some key challenges and needs
emerging from industries, practitioners, and the mar-
ket in general.

e Section 5 proposes some directions and suggestions for
future research.

e Section 6 presents some conclusions and closing re-
marks.

2. SOFTWARE PROCESS IN YEAR 2000

The Year 2000 marked an important milestone in Soft-
ware Engineering research. Increasingly, many researchers
and practitioners questioned themselves about the value and
impact of the results achieved in the past decades. Of course,
the advent of the new century introduced a particular em-
phasis and a unique symbolism. However, there was also
an increasing perception that the research work in many ar-
eas of Software Engineering had reached a sort of turning
point and needed to be rethought and redefined. Were the
results really able to influence and address the issues and
problems experienced by software developers, or were they
too often an intellectual exercise unable to concretely (and
proactively) affect the way software is conceived, developed,
deployed, used, and managed in real and practical scenarios?

As far as the trends in Software Process research are con-
cerned, the analysis accomplished in the FOSE 2000 paper
identified four main areas of investigation:

Process modeling and support A software process is a
complex endeavor involving professionals, organizations,
company policies, tools & support environments. A
first research area was centered on the creation of lan-
guages and environments to describe and “model” such
complex processes. The resulting models had to be
precise enough to facilitate the comprehension and anal-
ysis of the process, and to provide automated sup-
port to developers and managers involved in its “enact-
ment”. This research stream generated many Process
Modeling Languages (PMLs) and associated run-time
infrastructures. Such languages were based on a vari-
ety of paradigms (logic programming, finite state au-
tomata, Petri Nets, ...) and had to deal with complex
issues such as inconsistency management and integra-
tion of developers’ different viewpoints.

Process improvement A second important research area
was process improvement. Software development ac-
tivities are intrinsically dynamic and continuously evolv-
ing entities that cannot be frozen or defined once for
all. It is therefore essential to identify methods and
approaches to study the maturity of a process and to
identify strategies and procedures to improve it.

Metrics and empirical studies Software development is
a complex activity involving technical, human, and so-
cial/organizational factors. For this reason, it is not
easy to study and assess its behavior and determine
its performance. During the nineties, many researchers
developed and applied techniques and methods to per-
form empirical studies and identify useful metrics able
to characterize and assess software processes perfor-
mance.

“Real” Processes! Finally, based on the experiences and
achievements of the previous decades, several “con-
crete” processes were conceived and applied, e.g., the
Unified Process and the Personal Software Process.

Based on this substantial amount of research, there were
several attempts to assess the quality, significance, and areas
of improvement of the work accomplished in those years (see
for instance [2, 12, 34]). The FOSE 2000 paper analysed
these attempts and elaborated a number of considerations
and criticisms:

1. “Software processes are processes too”. Rephrasing the
famous paper title by Lee Osterweil [24], it is impor-
tant to observe that software processes are first and
foremost “processes”, i.e., it is not possible (and
useful) to consider software processes as spe-
cific and unique entities that deserve a com-
pletely autonomous and independent research
effort. Certainly, there are a few specific challenges
that qualify uniquely and distinctively the software do-
main, but there are also many commonalities and syn-
ergies with the work accomplished in other research
communities (e.g., workflow management), that in the
past have been largely overlooked.

2. “The purpose of process languages and technology must
be rethought”. Many languages developed during the
90s were too complex and rigid. In general, they
turned out to be difficult to apply in real settings and
not capable of producing a concrete impact on software
development practices. Certainly, it was (and still is)
important to provide means to describe processes ef-
fectively and also to provide automation whenever this
is possible and meaningful (e.g., configuration manage-
ment). But PMLs went too far and basically “missed
the point”.

3. “Empirical studies are a means not an end”. As with
PMLs, the risk of many empirical studies was to be-
come formal exercises without practical and concrete
relevance. Certainly, from a methodological viewpoint
it has been essential to introduce structure and rigor
in assessing the performance and behavior of software
processes, but too often the “internal validity” and
quality of empirical studies (i.e., their intrinsic and
methodological quality) have outshone their external
validity, i.e., their ability to provide general and uni-
versally usable insights and results.

4. “Software process improvement is process improvement
too”. Similarly to what happened in software sup-
port and automation research, process improvement
suffered from a sort of “isolation syndrome”: too of-
ten software processes were considered a specific and
unique category, thus ignoring or largely underestimat-
ing the contributions of other disciplines and research
areas. Indeed, improving software development pro-
cesses requires most of (if not all) the techniques and
methods used for any other complex people-centered
activity.

These criticisms raised a significant debate at the confer-
ence and in general in the community. Indeed, they reflected
the feelings and moods of many researchers. Most impor-
tant, they were based on a crude and sincere analysis of
the results of the research work accomplished in those years.
While there were several useful and successful achievements,
significant parts of that research work turned out to be in-
effective and largely ignored.

The dramatic and incredibly fast development of many en-
abling technologies and practices (mobile internet devices,
open source software, ...) has further reinforced the idea
that software process research definitely needed a signifi-
cant change in scope and approach. Over the years, the
community has understood the need for such change and
has produced the important results that we discuss in the
next section.

3. SOFTWARE PROCESS IN THE
PAST DECADE

In the past decade, research on software processes has
evolved significantly. Some of the concerns discussed in the
FOSE 2000 paper have been at least partially addressed.
In particular, it has been widely recognized that software
process is a multidisciplinary research domain and, conse-
quently, it should consider and incorporate contributions
from other disciplines. For instance, the main process im-
provement approach, CMM, has evolved into the Capability
Maturity Model Integration (CMMTI) framework'. CMMI
extends CMM by offering a finer grained mechanism for
measuring performance of an organization and by includ-
ing specific process areas, where organizational factors have
a key role.

Nowadays researchers are much less concerned about mod-
eling and executing processes. They have recognized that
the possibilities of fully automating them are limited to spe-
cific aspects and phases such as code generation, testing,
packaging, deployment and operation management of final
products. Moreover, they have agreed that software process
performance is heavily influenced by and structured around
the role and behavior of individuals and organizations [38].

To characterize this shift in focus, this section provides a
quick overview of the most relevant directions in software
process. The goal is not to provide an in-depth analysis and
evaluation of the results being accomplished: rather, the aim
is to highlight important topics and to contrast them with
the needs and challenges emerging from the IT market and
the society in general.

3.1 Social Aspects

Over the years, the literature on software processes has
been increasingly recognizing the importance of social as-
pects in software processes. For instance, Tamburri and
others [32] have analyzed the literature on organizational
social structures to identify those that are suitable to be
exploited in the software engineering domain.

The software development process has been considered a
socio-technical system, where organizational and human as-
pects have a key role and have to be supported by technology
in a way that is human and organization-driven. The term
socio-technical system has been first used by Eric Trist, Ken
Bamforth and Fred Emery in the fifthies, based on their
studies of workers in coal mines [33]. In particular, they
noted that the introduction of technology does not neces-
sarily result in improved performance. Improvement is the
result of proper interplay between 1) humans-centered as-
pects — in particular, social aspects — and 2) technology.
Thus, these two elements should not be studied and opti-
mized in isolation, as this approach typically fails to achieve
the desired objective.

"http://comiinstitute.com

By interpreting the concept of socio-technical systems with-
in the context of software processes, Cataldo and others [8]
have identified socio-technical congruence as a way to define
the fit between product dependencies, the resulting task de-
pendences, and the actual coordination activities occurring
during the development process. As argued by Blincoe and
others [5, 4], a timely identification of coordination require-
ments in terms of task dependencies becomes an important
factor to improve the performance of the software develop-
ment process.

3.2 Agile Processes

The importance of social aspects in the development pro-
cess has been also the driving factor that sparked the cre-
ation of the Agile Manifesto®>. The Manifesto is based on
some key principles:

1. the software product is the essential focus of the de-
velopment process;

2. human behavior and the quality of interactions are es-
sential enablers and success factors;

3. incremental and spiral approaches, based on frequent
releases and strict collaboration with the customer, are
the quintessential traits of modern software develop-
ment initiatives;

4. in general, it is vital to promptly and quickly react to
requirement changes, at any stage of the development
process.

The Agile Manifesto has spawned many approaches and
methods. Among the others, Scrum is certainly extremely
popular and successful [15]. According to this method, the
process is organized in sprints, i.e., development iterations of
at most 4 weeks each. Every iteration is focused on the de-
velopment of a specific set of features. Project tracking and
control are achieved through short daily meetings in which
each team member describes what he/she has been doing the
day before, what he/she is going to do in the current day,
and if there is any important issue to discuss. Such meetings
help identifying issues very early and changing plans accord-
ingly if needed. Changes in user requirements are accepted
and welcomed, but they are not considered in the current
sprint. They are described and prioritized so they can be
considered in the forthcoming sprints. At the end of each
sprint, the features that were the focus of the sprint have
to be fully completed, i.e., not only they should be imple-
mented, but also verified and documented, so that they can
be shipped to the customer.

Several studies have shown the advantages of Scrum in a
variety of situations and contexts. Among the others, it is
worthwhile mentioning the experiences in the application of
Scrum at Google [28]. Starting from a fairly immature and
chaotic situation (in the CMMI terminology), the applica-
tion of Scrum allowed engineering teams to achieve a better
control on the development process, a more careful priori-
tization of features, and more realistic deadlines. Another
interesting experience has been reported by Systematic Soft-
ware Engineering (SSE). SSE is a very mature organization
(level 5 in the CMMI scale) that has adopted a Scrum-based
approach for its software development processes [29]. This

’http://agilemanifesto.org

study confutes the critical remarks of many detractors of ag-
ile approaches according to which agile methods lack struc-
ture and organization, and therefore are difficult to apply to
mature and large software development processes.

3.3 Global Software Engineering

The need for coordination and agility becomes certainly
more challenging in a Global Software Engineering (GSE)
setting, where the software process is enacted by teams that
are distributed across different countries and time zones [19].
The motivation for distributing development teams goes be-
yond issues related specifically to software development ac-
tivities, and may concern a number of aspects and needs:

e establish and maintain a direct and strong contact with
customers at remote locations;

e exploit the availability of remote workers;

e reduce costs by offshoring part of the process to a re-
mote subsidiary /company;

e enhance the capabilities of small companies by creat-
ing networks and cooperation frameworks with other
development organizations and teams.

For these reasons, researchers have recognized the impor-
tance of promoting GSE practices. They have analyzed open
problems and emerging issues, and have coherently identi-
fied new tools and methods to address them. In particu-
lar, the literature offers interesting studies focusing on the
applicability to GSE of various process paradigms, and in
particular of Scrum [11]. Other studies discuss issues and
topics such as the impact of architectural choices on the de-
velopment process [10] and the value of exploiting innovative
tools to support awareness [21], or report specific success sto-
ries of cooperation either within large companies or among
SMEs [31]. Unfortunately, despite the large amount of work,
so far it is still difficult to draw general lessons and conclu-
sions from the cases that have been proposed by the research
community.

In general, the experiences of different authors at different
organizations suggest that success and failure are driven pri-
marily by the ability to establish effective mutual relations
and trust among software developers. Whether and how we
can systematically promote them in a GSE-specific context
is still to be understood [19].

3.4 The Role of Empirical Software Engineer-
ing

Over the past decade, empirical studies in software engi-
neering have significantly evolved, both in terms of quality
of the methods being used, and in terms of the external va-
lidity of the results that have been proposed. Indeed, there
have been several contributions that have focused on the
characterization and evaluation methodology and approach
used in empirical studies (see for instance [36]).

Currently, there are many ongoing research works cen-
tered on rigorous empirical studies whose goal is to show
the advantages of some new approach/practice [25], or to
demonstrate the validity of a research hypothesis [7]. In ad-
dition, while many older studies were negatively affected by
the impossibility to replicate them, the tremendous growth
of open source projects has enriched the amount of data
and observation viewpoints available to researchers. This

has made it possible to apply empirical analysis on a wider
scale, thus resulting in a significant improvement of the qual-
ity of the studies and of the related findings.

3.5 Model-Driven Engineering

Model-driven engineering is a specific approach to soft-
ware development that focuses on using models as the arche-
types to build software systems. This enables traceability
from requirements to code, (automatic) generation of code
for different target platforms, and analysis of models to pre-
dict the ability of the final system to fulfill specific QoS
characteristics.

The main reference for model-driven development is the
OMG specification named Model-Driven Architecture (MDA)
[23], which has been released in an intermediate version
(1.0.1) in 2003 and was planned to be replaced by a new
one by 2005. So far, the new release has not been issued
yet, but the work around MDA is progressing, as witnessed
by the presence of specific conferences and workshops on this
subject (most notably, MODELS 2013).

The MDA approach identifies three different viewpoints
used to describe a system: the Computation Independent
Model (CIM), the Platform Independent Model (PIM), and
the Platform Specific Model (PSM). CIMs usually represent
concepts specific of a given business. This level usually de-
scribes requirements, enterprise architectures, and business
models. PIMs discuss how the system works by abstracting
the platform-specific elements. At this level, the architec-
tural models are elaborated describing the business logic of
an application. PSMs introduce aspects that are concerned
with the usage of a specific platform (e.g., JEE) for the im-
plementation. The underlying idea is that, given the defini-
tion of the target platform within a Platform Model, a PIM
model can be automatically transformed into a PSM one,
suitable for direct code generation.

Even if full adoption of model-driven engineering by in-
dustry is still limited, the scientific literature reports some
interesting case studies. Among the others, the recent work
by Briand et al. [6] provides useful hints on how to promote
the adoption of a model-driven approach in real industrial
contexts. In particular, it describes three specific cases of
adoption that are particularly interesting as they have not
been achieved within IT companies, but in organizations
focusing on the maritime or energy sector. One of the re-
ported cases refers to the adoption of a model-driven ap-
proach to support a software safety certification process, by
ensuring traceability of safety requirements. Another inter-
esting paper focusing on the adoption of MDA in industry is
by Whittle and others [35]. They highlight the importance
of establishing processes within the companies to support
the adoption of MDA. Moreover, they argue about the im-
portance of matching tools to the people who are going to
use them. In this respect, their conclusions are in line with
the ones proposed in [6].

3.6 ALM

Application Lifecycle Management (ALM) suites are a
class of products originated partly by the conventional soft-
ware industry and partly by the open source community.
Even though they do not appear as explicitly connected to
Software Process research, they offer mechanisms for au-
tomating some tasks (typically, build and test), and for
connecting managerial tasks with software development ac-

tivities. Moreover, they offer connectors to external tools
for specific functionality such us configuration management,
bug tracking, requirement management and the like. Exam-
ples of ALM tools are Microsoft Visual Studio Application
Lifecycle Management®, IBM Rational solutions for CLM?,
and the open source suite MyLyn®, which is integrated in
Eclipse and has then evolved into the Tasktop commercial
product®.

In [9] Application Lifecycle Management is presented as
a discipline aiming at taking care also of application oper-
ation procedures and managerial governance. However, as
the author claims, current ALM tools do not support the
integration of these aspects with those related to software
development.

As we will see in the next section, the integration of soft-
ware development into a broader context is also the objective
of the DevOps movement.

3.7 Where Automation Really Matters

Nowadays, the most important application of automation
in software processes is in supporting the final phases of
software development.

3.7.1 Configuration Management

Configuration/version management has been revitalized
by new tools, most notably, git”, but also by software forges,
i.e., collaboration platforms, typically made available as
Software-as-a-Service (SaaS), which are useful to organize
and make visible to developers and external observers many
pieces of information concerning a software being developed.
Thanks to forges, version management is not seen anymore
as a very difficult feature to install and operate, but as a ser-
vice that teams use daily for managing software, conducting
discussions, sharing information within the project team.

3.7.2 Quality Assurance

Automatic quality assurance tools and processes have
reached a significant level of usability, and are increasingly
adopted and used by software development teams and
organizations.

e Developers can easily use source code analysis tools
that provide indicators and metrics about the quality
of the software being developed. An example of these
tools is SonarQube®.

e Testing can be significantly automated. The execution
of unit and integration test is now already largely au-
tomated thanks to the diffusion of the XUnit family.
Another significant example of tool in this area is Sele-
nium?®, which supports the creation of automated test
cases for a web application by recording testing scripts
from the actions of a user on the corresponding web
interface.

3http://msdn.microsoft.com/library/fda2bads (VS.
100) . aspx
“http://pic.dhe.ibm.com/infocenter/clmhelp/v4rOml/
index. jsp

Shttp://www.eclipse.org/mylyn/
Shttps://tasktop.com

"http://git-scm.com

8http://www.sonarqube.org
http://docs.seleniumhg.org

e Acceptance-level tests can be automated as well us-
ing tools such as Easyb'® or Fitnesse'!. They make
it possible to rigorously express requirements and to
automate test execution. For instance, Easyb uses a
Domain Specific Language that enables the associa-
tion of scenarios with the execution of specific pieces
of code, while in Fitnesse requirements are expressed
in terms of tables that extensively define the corre-
spondence between inputs and associated outputs.

e Finally, even the testing process as a whole is be-
ing automated. For instance, the STAF framework'?
offers a quite complete, even though textual (XML-
based), scripting language for defining the testing pro-
cess. STAF makes it possible to model when testing
should be triggered, which tests should be executed,
and under which circumstances.

3.7.3 Software Building

Automation is possible and exploited in all the activities
and processes related to building, deploying, and operating
software systems. Let’s consider here a few significant ex-
amples:

e By running a Maven'? script, every user is able to
check out a software release from a version manage-
ment system, automatically download all needed ex-
ternal components and libraries, and get ready for the
deployment of the final product.

e Frameworks like Jenkins[26] close the develop, inte-
grate, check quality, build cycle by integrating some
of the previously mentioned tools, and by offering an
environment that can even be configured to automati-
cally generate the ready to be deployed product, as soon
as a new version of a single source code file is pushed
into the version management system. This increases
the awareness of the development team about the im-
pacts and results of the development activity. This
approach is known as continuous integration [17].

e Automation plays a major role also in the operation
phase, as far as the management of applications and
their related software stack is concerned. This has
been enabled by the introduction of virtualization and
remote control mechanisms and, more recently, the dif-
fusion of public and private clouds. For instance, Pup-
pet * is an example of a tool supporting application
management, while Nagios '® can be used for monitor-
ing the application state.

3.7.4 DevOps

The increasing level of automation enables software devel-
opers to fulfill the requirements of business critical applica-
tions in terms of availability, reliability and response time.
At the same time, it creates a bridge between the develop-
ment and the operation activities that is often identified by
the term DevOps [14]. DevOps is determining a significant

Ohttp://easyb.org
"http://fitnesse.org
2http://staf.sourceforge.net
Bhttp://maven.apache.org
Yhttp://puppetlabs.com
Bhttp://www.nagios.org

organizational change within IT companies. For instance,
as reported in [20], organizations like Amazon are choosing
a “per service” organization, where cross-functional teams
are entirely responsible for the development and the oper-
ation of a set of services. The metrics used for assessing
the performance of such teams are focused on the quality
and stability of the final services, rather than on the pro-
ductivity measurements traditionally suggested by software
engineering research.

4. MAJOR TRENDS AND CHALLENGES

The previous sections have briefly summarized the achieve-
ments, issues, and research directions that have been char-
acterizing the Software Process research community in the
past two decades. Looking ahead, to understand and imag-
ine the future of Software Process research, it is vital to dis-
cuss the trends that are reshaping the I'T market as a central
economic sector of our society and, consequently, Software
Engineering as an essential and critical scientific discipline.
In our view, these trends can be structured around four main
major challenges.

4.1 Challenge 1: The Internet is the Develop-
ment Environment

Nowadays, the Internet is the development environ-
ment, i.e., any development activity is carried out over the
Internet, even for small scale developments.

1. We collaborate and work over the Internet, within a
single company or across the boundaries of different
organizations or with sparse and distributed individu-
als. Notions such as “development environment” and
“development team” have radically and dramatically
changed: software is rarely developed in isolation, as
it is more and more the result of interaction, integra-
tion, and cooperation among developers and between
developers and end-users working in a Networked Soft-
ware Development context [30]. This is driving a pro-
found and radical change in the methods and
techniques used to conceive, design, develop,
test, deploy, and evolve software. Crowdsourcing
is an example of this change that still needs to be fully
understood and evaluated [37].

2. Software is continuously changed and redeployed based
on customers’ requests and expectations. This poses
huge challenges to classical processes such as config-
uration management, and software deployment and
operation. The corresponding environments and sup-
port technologies have to reliably operate on an
Internet-wide scale.

3. Nowadays, for some classes of software products it is
more important to achieve time-to-market than high
reliability /quality. Conversely, for other software sys-
tems reliability is vital and central, as these systems
need to guarantee safety critical requirements. At the
same time, we have applications (e.g., mobile apps)
that are used for a few weeks or even just for a specific
event, while there are software systems whose lifetime
spans decades, and need to be continuously evolved
and integrated taking into account new waves of tech-
nologies and services available on the Internet. In gen-
eral, the variety of situations and contexts in which

software is used is significantly expanding. Conse-
quently, existing quality standards and models
need to be extended and adapted to very dif-
ferent situations and contexts.

4.2 Challenge 2: The Internet is the Architec-
tural and Execution Infrastructure

Most modern systems are built by aggregating and recom-
bining distributed software components interacting over the
Internet. This notion is of course fairly obvious for web-
based and mobile applications, where the Internet enables
application mashups and the creation of widely distributed
client-server and p2p systems. However, increasingly any
software is directly or indirectly operating or inte-
grated over the Internet. Even control systems and in-
dustrial applications (e.g., SCADA-based control systems)
are more and more directly interacting with classical infor-
mation systems, and are managed and controlled through
the Internet. In general, any software element, even those
strictly related to real-time and control functions, is part of
wide Internet-based systems. Basically, the classical sep-
aration among different types of software tends to
disappear or to become more complex to articulate
and master.

In the past decade, (at least) three expressions have emer-
ged to emphasize and stress this trend:

1. Internet of things: any product (or “thing”) is becom-
ing “intelligent” by incorporating some computing and
communication capability.

2. Smart services: classical services interacting with “in-
telligent objects” become new “smart services” [1] (e.g.,
a connected car enables new forms of insurance and as-
sistance services based on a pay-as-you-go approach).
The boundaries of a software system span the entire
value chain of a company, from traditional back ends
to unconventional front ends.

3. Disappearing computers: computing devices tend to
disappear as they are no longer uniquely associated
with conventional desktop or notebook machines.

Cloud computing is another approach that reinforces the
notion of the Internet as the infrastructure for the
development and operation of modern software sys-
tems. Cloud computing is based on the virtualization over
the Internet of different kinds of services and infrastructures:

Infrastructure as a Service (IaaS): provisioning of vir-
tual machines and other infrastructural elements.

Platform as a Service (PaaS): provisioning of databases,
web servers, and other runtime environments.

Software as a Service (SaaS): provisioning of software
applications as remote services.

Indeed, cloud computing stresses the notion of software
systems being organized as a combination of remote, dis-
tributed, and/or local components (typically, according to a
“hybrid cloud” paradigm).

This trend poses new problems and challenges to Software
Engineering in general, and to Software Process research
more specifically. How do we support and assist developers
in all the different phases of the development process? What

is the impact of the scale of the Internet on existing sup-
port technologies and methods? Are these technologies and
methods able to cope with these challenges and contraints?
What is the role of users and customers in this process?
What are the new actors in this worldwide distributed value
chain?

4.3 Challenge 3: Users are Mobile, Nomadic,
and ""Always On"'

The technological evolution of the past decade has rad-
ically reshaped the IT market and changed users’ behav-
ior and attitude. In particular, the advent of smartphones,
tablets, sensors & intelligent devices have ignited a shift in
focus from classical desktop and enterprise computers to mo-
bile devices. This change poses a number of critical and
specific challenges to software developers:

e Mobile devices exhibit different form factors and in-
teraction paradigms. Thus, user interfaces have to
be completely rethought. It is not just a matter of
“increasing usability”: rather, it is necessary to study
new interaction paradigms able to explore the intrinsic
characteristics of these new devices and of the condi-
tions under which they are typically used. In general,
it is mandatory to integrate software design techniques
and expertise with true industrial designers’ skills and
methods.

e Mobile software must operate taking into account the
varying reliability of the Internet connection it may be
forced to use. Thus the alignment and synchronization
with back ends become crucial.

e A crucial issue for mobile devices is power consump-
tion. This is not just a problem related to hardware
components or batteries: software designers have be-
come increasingly aware that software has to be de-
signed in order to minimize the usage of hardware
and communication resources and, consequently, re-
duce power consumption. Indeed, “software for low
power” is now a critical area of research that is (must
be!) tackled by software engineering and software pro-
cess research (e.g., by providing simulation systems
able to estimate and optimize the consumption of power
associated with specific software architectures and de-
sign choices).

In general, designing software for mobile devices is
not just a variation of classical development pro-
cesses: it requires new and specific techniques, policies, and
methods able to effectively address the new challenges intro-
duced by this change.

4.4 Challenge 4: The Internet is the Basic Dis-
tribution and Business Infrastructure

In the past decade, software distribution and commercial-
ization have radically changed as a consequence of two main
facts: 1) devices are permanently connected to the Internet;
2) software can be easily distributed, installed, and config-
ured over the Internet. In turn, these two changes have had
important consequences on the nature and organization of
the software market.

1. Software updates can be accomplished much more fre-
quently. As soon as a bug is discovered, developers can
push updates through the Internet.

2. Users and customers do expect frequent and timely
updates to address faults or issues emerged by using a
software application.

3. Software development is no longer constrained by na-
tional or local markets. Thus, software needs to be
able to operate in multiple languages and coherently
with the specific requirements and contraints of each
region.

4. E-commerce has been applied also to software distribu-
tion. Of course, being software virtual “by nature”, it
has been very easy to replace conventional distribution
channels and stores with virtual ones.

These trends have caused and generated another impor-
tant innovation: app stores. Initially, they have been con-
ceived to simplify the purchase of software applications on
mobile devices. The first examples have been the stores
developed for Windows Mobile and Symbian in the first
half of the past decade. However, the advent of the iPhone
App Store has introduced a radical change with respect
to the existing ones: the App Store is the only way to
legally sell and install software on an Apple mobile device.
This way, the App Store introduces a new approach to soft-
ware distribution: it defines an ecosystem in which
the hardware/software producer (Apple) controls
the platform/OS (i0OS), and the process used to dis-
tribute and sell any other software (even the one
offered by others) [22].

In the past years, other stores and associated ecosystems
have been created using a paradigm similar to the Apple App
Store, the most popular ones being the Mac Store (OSX),
Google Play (Android), and the Windows Store (Windows).
In general, app stores define a totally new software market,
not only because they change the process through which
software is distributed and installed, but also because they
have introduced new business models (e.g., “in-app pur-
chases”) and have disrupted existing commercial approaches.
The overall effect has been the advent of many new (often
small) developers, an incredible growth in the number of
apps being sold, and the establishment of completely differ-
ent economics and revenue profiles.

In parallel with the development of app stores, the evolu-
tion of operating systems has been biased by two somewhat
conflicting trends.

On one side, the role of operating systems tend to become
less and less relevant:

e Many application are now web-based and therefore in-
dependent from specific operating systems (even if now
they are dependent on different browsers ...).

e There are several cross-platform development environ-
ments and technologies (e.g., HTML5) that are trans-
parent with respect to the specific operating system
running on the machine/device.

On the other side, traditional operating systems and plat-
forms have proliferated with the introduction of new families
of mobile devices. In turn, the advent of mobile operating
systems has influenced also the evolution of desktop and
enterprise platforms. As a consequence, while in the past
decades we just had Windows and a few Unix dialects, nowa-
days we have a number of desktop/mobile operating sys-
tems: 10S, OSX, Windows, Linux (multiple distributions),

and Android (multiple versions). In addition, there are a
number of Unix versions running on enterprise architectures
and solutions. Finally, even for the same platform (e.g., i0S)
there might be significant differences, requirements, and con-
straints due to multiple sizes and form factors (e.g., iPad vs.
iPhone apps).

In general, over the past years the number of target
environments that a developer has to consider in
order to plan a software development initiative have
increased significantly, even if operating systems as such
are less relevant than in the past. In addition, the entire
software development and distribution chain has radically
changed: the deployment and management of the same ap-
plication across multiple stores and platforms/dialects (in
particular, Android) has become extremely complex and ex-
pensive. As a consequence, quality assurance and soft-
ware security have become even more important and
critical than before, as the achievements reached so
far still do not allow to fully address such complex-
ity.

Recently, a new form of ecosystems is emerging: open
API ecosystems. They are based on the notion of open
standards, application mashup, and coopetition. For in-
stance, one of such ecosystems is promoted by the US Gov-
ernment'® that offers a catalog of the open APIs offered
by many governmental organizations. Another example is
EO015, being developed for the upcoming Universal Exhibi-
tion to be held in Milano in 2015'7. E015 enables a new
approach to the design and implementation of advanced dig-
ital services and applications. In particular, EO15 is a multi-
stakeholder initiative that comprises a number of synergic
elements:

e A digital interoperability platform (middleware) based
on the Service-Oriented Architecture (SOA) paradigm,
open standards, and a flat peer-to-peer interoperability
model.

e A set of shared rules and policies ensuring non-discrim-
inatory access to the ecosystem, and promoting collab-
oration and cooperation (coopetition) among individ-
ual developers, private companies and industries, pub-
lic administrations. A developer can 1) expose its own
services (API) specifying the conditions under which
they can be used; 2) use the available services (ac-
cording to the rules specified by the service creator) to
develop its own applications.

e A governance model and related processes that ensure
neutrality of the ecosystem with respect to individual
needs and interests, evolution of the technical spec-
ifications, promotion and diffusion of the ecosystem
across all domains and sectors of the society.

e An open participatory process that enables everybody
to contribute and collaborate.

E015 is not just a single application or a physical infras-
tructure. EO015 exploits the notion of API economy to go
beyond the open data paradigm and provides full, bidirec-
tional, and direct interoperability among autonomous dis-
tributed applications (open services). The interoperability

Yhttp://wuw.data.gov/developers/page/
developer-resources
Yhttp://www.e015.expo2015.0org

model is based on open standards. Therefore, E015 is an
open ecosystem that radically turns upside down the notion
of “walled garden” used in the past decades by many telco
operators.

S. RESEARCH ISSUES AND DIRECTIONS

Many of the research areas and activities identified in Sec-
tion 3 are dealing with and addressing different aspects and
facets of the four challenges discussed in the previous sec-
tion. Certainly, the problems we as a community are facing
are extremely complex and rapidly evolving. Therefore, if
and when needed, it is essential to continuously reassess and
redirect the focus of the research work. Obviously, this is not
a simple exercise. The risk is to overlook important topics,
overemphasize others, fail to spot and understand the real
important ones. Still, it is possible to mention some top-
ics that are increasingly important and still lack convincing
answers.

5.1 From Rigid Compliance to Smart Conver-
gence

Software development is a human-centered process (see
Section 3.1), in which creativity and autonomy play a cru-
cial role. Consequently, most of the activities occurring in
a software process cannot be rigidly automated. Typically,
there are boundaries and goals that constrain and drive soft-
ware developers’ work, but it is impossible to force them to
follow rigid and predefined patterns and procedures. Cer-
tainly, there are specific activities where prescription and
automation are useful, e.g., distributed configuration man-
agement and software deployment (see Section 3.7). Indeed,
these are highly repetitive and error-prone activities and can
therefore benefit from highly automated environments. But
these are just a subset of the activities that defines software
development.

In general, software development is a complex process in
which it is not useful or possible to enforce a step-by-step
compliance with a rigid predefined model. In software devel-
opment consistency is the exception and inconsistency is the
most common state [3, 13]. Therefore, it is impossible to
impose a rigid adherence to a (often strictly) predefined set
of rules and constraints. Rather, it is much more important
to ensure that the process as a whole “converges” towards
the desired outcome, tolerating, controlling, and exposing
inconsistencies as they occur. This “smart” convergence
is much more important than rigid compliance. In
process automation and support, it is therefore essential to
make inconsistencies a “first-class citizen”, helping software
developers to visualize, monitor, and manage them, rather
than “fighting” to eradicate them.

Agile development approaches (see Section 3.2) are mov-
ing along this line, stressing the ability to address contin-
uous changes in requirements and implement the required
architectural refactoring. Unfortunately, even if the Wa-
terfall Model is typically presented as a historical relic of
ancient times and many effective Agile methods have been
introduced and brought to the market, too often real de-
velopment activities are still carried out according to rigid,
inflexible, and fairly sequential processes. Indeed, it is es-
sential to study new approaches, management practices, de-
sign methods, and also technical solutions to make agility
and smart convergence easy to implement and “enact” in

traditional software development processes, whenever this is
required or desirable.

5.2 The Fading Distinction Between Design,
Development, and Operation

As discussed in Section 3.7, development and operation
teams are increasingly integrated to reduce the timespan
from development to operation. Moreover, as recognized
several years ago [16], there is an increasingly strong con-
nection and mutual dependency between software architec-
tures and enabling infrastructures (operating systems, mid-
dleware, Internet-based architectures and infrastructures,
cloud computing).

These observations have at least three main consequences:

1. The design of a modern software system is strictly de-
pendent on the nature and characteristics of the in-
frastructure being used to implement it. It is not wise
and not even possible to design a system ignoring the
infrastructure that will be used to build, deploy, and
manage it.

2. Even more, systems evolve as combination of classical
software development activities, dynamic infrastruc-
ture evolution, on-the-fly reconfiguration of run-time
components.

3. Finally, non-functional requirements related to perfor-
mance management and fault tolerance are crucial and
must be considered throughout the entire development
process and not just as implementation issues to be
dealt with “once the system goes operational”.

In general, the classical distinction among design,
implementation, and operation tends to disappear or
to be radically redefined.

5.3 Process Appraisal and Visualization

One of the most important and crucial issues in mastering
any complex phenomenon is being able to understand and
assess its state and behavior. In Section 3.7 we have men-
tioned that tools like Jenkins offer metrics typically derived
from the results of the execution of code analysis and testing
tools. These metrics alone, however, are not necessarily suf-
ficient to fully appraise and evaluate the state of a complex
software development process, which is often distributed and
sparse both geographically and from a managerial and com-
mercial viewpoint.

In general, it is essential to identify and develop new
methods to assess, represent, and communicate the
state of a software development process. It is not just
a matter of identifying new and more convincing metrics
and classical measurement programs, or to conceive more
appealing and easy-to-use user interfaces. We really need
new paradigms (and underlying enabling technologies) that
are able to intuitively convey the key information describing
the state of a process, of the organization enacting it and
of the software system being managed, and to support their
study and assessment whenever needed or desirable.

5.4 Security, Privacy, and Trust

Software is increasingly pervasive and ubiquitous. Conse-
quently, the issues related to security, privacy and trust be-
come more and more critical. Security threats can emerge

anywhere: management of development environments and
back ends, communication between front ends and back ends,
management of front ends, user interfaces, social engineer-
ing. Any phase of the value chain can be attacked and ex-
pose companies and individuals to severe risks. Moreover,
the impressive development of mobile technologies and of
Internet-based services, along with the rising of the debate
on international monitoring activities, have made them a
(if not “the”) major topic also for the software engineering
community.

Are software development methods and technologies ad-
equate to assess the level of security, privacy, and trust of
a software system? How do we design upfront and prove
to customers and users that a software system exhibits ade-
quate levels of security, privacy, and trust? Is this something
that can and should be dealt with independently of classical
software development activities? Worse, is it something that
should be considered “out of scope” and not relevant for the
software engineering community?

Certainly, the topic is not just technical, but, as re-
searchers, we can (and should) identify and assess
the major issues, propose ways to monitor and man-
age threats, assess the impact that these problems
can have on software development activities. When
should we consider them? How? To what extent? What
techniques do we need? How to expose, visualize, and deal
with them? As a responsible community of scientists we can-
not ignore or overlook these problems and issues, as they are
a major concern for citizens, enterprises, and institutions all
around the world.

5.5 Controlled vs. Unplanned Interaction and
Collaboration

Collaboration in software development activities goes well
beyond the classical boundaries of the traditional software
development company (see Section 3.3). In particular, there
are some important trends to consider:

1. Cooperation among companies and between compa-
nies and their customers occur on an Internet-wide
scale. Indeed, there is a significant number of tools
and environments that aim at addressing this increas-
ingly large market sector (see for instance Asana'® and
Basecamp'®).

2. Open source forges and other Internet-based communi-
ties change the intrinsic dynamics according to which
software is conceived, developed, and distributed.

3. The impressive development of cloud computing,
Internet-based composition and mashup services (e.g.,
IFTTT?, Zapier?!, CloudWork??, and Mashape23),
and, in perspective, of open API ecosystems (e.g, US
Government APIs Initiative and EO015) are radically
transforming the notion of “collaboration” among
software developers.

Bhttp://www.asana.com
Yhttp://www.basecamp. com
Onttp://www.ifttt. com
nttp://www.zapier. com
Znttp://wuw. cloudwork. com
Zhttp://www.mashape . com

Software development is occurring in new, unconventional,
and unpredictable settings and scenarios. It is therefore es-
sential to develop new approaches to collaboration and in-
teraction that take into account these trends. It is not just
a matter of supporting distributed teams as discussed in
Section 3.3. It is necessary to deal with varying collabora-
tion boundaries, dynamic and on-the fly interactions, inter-
companies commercial and legal agreements. How is the
software process community addressing these complex issues
from a methodological and technological viewpoint?

5.6 Business and Organizational Models

The profound innovation occurring in the technical and or-
ganization approaches used to conceive and deliver software,
and the introduction of mobile devices, app stores, and open
source software have radically changed the organization and
structure of the software market, even if in conflicting and
somewhat divergent ways. On one hand, software is often
considered a consumer product whose cost should reflect the
trends and perceptions of that kind of market. On the other
hand, software is the most critical and sophisticated compo-
nent of any complex product or services. Thus, it is becom-
ing increasingly difficult to identify business and organiza-
tional models that are able to guarantee innovation, return
over investments, and customer satisfaction.

Of course, there are specific areas (real-time and control
software, bespoke software for large and military organiza-
tions, embedded systems, ...) where these changes are less
relevant and visible. Nonetheless, many classical software
companies are forced to radically change their market posi-
tioning, the focus of their product strategies, and their core
business models. Microsoft is a classical example of a com-
pany that is significantly changing its position and business
model: from conventional client apps to cloud computing
(TaaS, PaaS, and SaaS), from classical licensing schemes to
other models including also open source. In general, the
economics and business models of software are dramatically
changing. It is essential to study this transformation to
avoid a major risk: a general and unjustified “commoditi-
zation” of software. Software is not a commodity, it
does cost, it is not “free” as in “free beer”.

These new and innovative business models cannot be con-
ceived by just considering pure economic factors and con-
traints. They have to be defined by aligning innovation in
business models with the intrinsic characteristics of innova-
tive service and product models (e.g., how do we pay the cost
of developing and using open API services?). Thus there is a
role for the software engineering and software process com-
munity, as the issue cannot be just considered a matter of
economists and business analysts.

5.7 “Don’t flog the dead horse”

The innovations presented in Section 3 have been radi-
cally transforming the way software is designed, developed,
integrated, distributed, and commercialized. In many cases
they have been generated by practitioners who have derived
proper solutions from their own needs. At the same time, the
dramatic changes in the way we live and operate immersed
in pervasive ICT technologies are having (must have!) a
profound impact on software engineering and soft-
ware process research. As researchers we should be more
receptive to the approaches and tools that are emerging in
the practitioners arena.

10

A major risk of any scientific community is to focus on
the research areas that have been consolidated along the
years, independently of the real impact of the results that
have been achieved, and of the emerging issues that deserve
new energies and focus. This induces a sort of continuous
rework (often quite artificial) around the same topics and
areas, even when they demonstrate to be not so important
or aligned with the requests and challenges of the target
domains. A nice italian expression to illustrate this notion
says “pestare l’acqua nel mortaio”, more or less equivalent
to the English expressions “scooping water with a sieve” or
“flogging the dead horse”. We should be clever and wise
enough to abandon our comfort zones and move to “unex-
plored oceans” that are certainly riskier, but undoubtedly
more promising and ultimately useful. As Storey et al. dis-
cuss in their FOSE paper [27], we should learn how we can
“influence the future” by producing results that are not only
sound and theoretically interesting, but are also having a
concrete positive impact on how people develop the soft-
ware systems which the modern society is increasingly rely-
ing upon.

6. CONCLUSIONS

Over the years, the complexity and size of software have
dramatically increased. Nowadays, software is a critical as-
set of our society, as it is the core element of any modern
product, process, or service. These growing importance and
relevance are posing new and tough challenges and pres-
sure on software development companies and teams. They
do need innovative and effective approaches to master the
complexity of software development activities, reduce risks,
ensure trust and reliability of the software solutions needed
in the society. As a consequence, Software Engineering and
Software Process research play an essential and central role
in our scientific communities, universities, software compa-
nies, and industries in general.

Software Process research has significantly changed in the
past decade. There has been a radical shift from providing
modeling and automation of software development activi-
ties, to addressing a broader range of issues that take into
account in a multidisciplinary and holistic way the differ-
ent facets and aspects of such human-centered endeavors.
This transformation demands for a continuous and never-
ending effort focused on studying related research domains
and disciplines, combine industrial and academic expertise
and knowledge, intertwine exploratory and long-term activ-
ities with empirical studies and in-field case studies.

If one word has to be used to represent this challenge,
we would use the term “openness”, as it is a reminder of a
number of important topics and issues:

e We need to be “open” to the trends affecting the market
(consumer and professional) and the society in general.
Software is used in extremely different settings and is
characterized by a variety of requirements and needs.
There is no single approach — or even characterization
of problems and issues — that can be uniquely used to
drive and inspire the research work of the community.

e Software Process research is extremely complex and
multifaceted. It is counterproductive and pointless not
to reuse, recombine, and exploit the knowledge and ex-
pertise developed in other communities both in Com-
puter Science and in other scientific domains.

e As researchers, we need to abandon our comfort zones
and be “open” to new challenges, suggestions, ideas,
and trends emerging anywhere in the society. We must
be open to changing also assumptions and principles
that have inspired out work over the past decades. The
world has changed, the software industry has changed,
we need to change accordingly. Even more, we should
try to imagine and anticipate those changes in order
to help shape the future.

Indeed, the work of the Software Process community is
focused on a key element of Computer Science and Software
Engineering research. In fact, any other branch is eventually
relying on the ability of teams to construct and deliver soft-
ware systems that are aligned with the requirements, con-
straints, and expectations of their users. This is a fantastic
motivation to work in such an important discipline and, ul-
timately, to offer our contribution to the construction of a
better society.

7. ACKNOWLEDGEMENTS

We wish to thank Gustavo Costa and all our colleagues
at CEFRIEL and Politecnico di Milano for the useful dis-
cussions on the issues and challenges we present in this pa-
per. We are also very grateful to Gerard Pompa, Margaret-
Anne Storey, Damian A. Tamburri, and Alexey Zagalsky for
their useful comments on a preliminary version of this paper.
The work of the second author has been partially supported
by the European Commission grant no. FP7-ICT-2011-8-
318484 (MODAC]louds).

8. REFERENCES

[1] G. Allmendinger and R. Lombreglia. Four strategies
for the age of smart services. Hardward Business
Review, pages 131-145, October 2005.

[2] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing
process-centered software engineering environments.
ACM Trans. Softw. Eng. Methodol., 6(3):283-328,
July 1997.

[3] R. Balzer. Tolerating inconsistency. In L. Belady,

D. R. Barstow, and K. Torii, editors, ICSE, pages
158-165. IEEE Computer Society / ACM Press, 1991.

[4] K. Blincoe, G. Valetto, and D. Damian. Do all task
dependencies require coordination? the role of task
properties in identifying critical coordination needs in
software projects. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 213-223, New York, NY,
USA, 2013. ACM.

[5] K. Blincoe, G. Valetto, and S. Goggins. Proximity: A
measure to quantify the need for developers’
coordination. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work,
CSCW 12, pages 1351-1360, New York, NY, USA,
2012. ACM.

[6] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and
T. Yue. Research-based innovation: A tale of three
projects in model-driven engineering. In Model Driven
Engineering Languages and Systems - 15th
International Conference, MODELS 2012, Innsbruck,
Austria, September 30 - October 5, 2012. Proceedings,
volume 7590 of Lecture Notes in Computer Science,
pages 793-809. Springer Berlin Heidelberg, 2012.

11

[7] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta.
How changes affect software entropy: an empirical
study. Empirical Software Engineering, pages 1-38,
2012.

[8] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-technical congruence: A framework for assessing
the impact of technical and work dependencies on
software development productivity. In Proceedings of
the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
ESEM ’08, pages 2-11, New York, NY, USA, 2008.
ACM.

[9] D. Chappel. What is Application Lifecyle

Management? Technical report, David Chappel &

Associates,

http://www.davidchappell.com/whatisalm—

chappell.pdf,

2008.

V. Clerc. Do architectural knowledge product

measures make a difference in gsd? In ICGSE, pages

382-387. IEEE, 2009.

M. Cristal, D. Wildt, and R. Prikladnicki. Usage of

scrum practices within a global company. In Global

Software Engineering, 2008. ICGSE 2008. IEEE

International Conference on, pages 222—226, 2008.

G. Cugola and C. Ghezzi. Software processes: a

retrospective and a path to the future. In Software

Process Improvement and Practice, pages 101-123,

1998.

G. Cugola, E. D. Nitto, A. Fuggetta, and C. Ghezzi. A

framework for formalizing inconsistencies and

deviations in human-centered systems. ACM Trans.

Softw. Eng. Methodol., 5(3):191-230, 1996.

P. Debois. Devops: A software revolution in the

making? The Journal of Information Technology

Management, 24(8):3-5, August 2001.

P. Deemer, G. Benefield, C. Larman, and B. Vodde. A

lightweight guide to the theory and practice of scrum

(version 2.0). Technical report,

http://www.scrumprimer.org, 2012.

E. Di Nitto and D. Rosenblum. Exploiting adls to

specify architectural styles induced by middleware

infrastructures. In Proceedings of the 21st

International Conference on Software Engineering,

ICSE ’99, pages 13-22, New York, NY, USA, 1999.

ACM.

M. Fowler. Continous integration.

http://martinfowler.com/articles/continuousIntegration.html,

2006.

A. Fuggetta. Software process: A roadmap. In

Proceedings of the Conference on The Future of

Software Engineering, ICSE ’00, pages 25—34, New

York, NY, USA, 2000. ACM.

J. D. Herbsleb. Global software engineering: The

future of socio-technical coordination. In L. C. Briand

and A. L. Wolf, editors, FOSE, pages 188-198, 2007.

J. Humble and J. Molesky. Why enterprises must

adopt devops to enable continous delivery. The

Journal of Information Technology Management,

24(8):6-12, August 2001.

F. Lanubile, C. Ebert, R. Prikladnicki, and

A. Vizcaino. Collaboration tools for global software

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

[23]

24]

[25]

[26]

[27]

28]

[29]

[30]

31]

engineering. Software, IEEE, 27(2):52-55, 2010.

K. Manikas and K. M. Hansen. Software ecosystems -
a systematic literature review. J. Syst. Softw.,
86(5):1294-1306, May 2013.

J. Mukerji and J. Miller. MDA Guide Version 1.0.1.
omg/2003-06-01, June 2003.

L. Osterweil. Software processes are software too. In
Proceedings of the 9th International Conference on
Software Engineering, ICSE 87, pages 2—13, Los
Alamitos, CA, USA, 1987. IEEE Computer Society
Press.

R. K. Panesar-Walawege, M. Sabetzadeh, and L. C.
Briand. Supporting the verification of compliance to
safety standards via model-driven engineering:
Approach, tool-support and empirical validation.
Information € Software Technology, 55(5):836-864,
2013.

J. F. Smart. Jenkins The Definitive Guide. O’Reilly,
2011.

M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho,
and A. Zagalsky. The (r)evolution of social media in
software engineering. In Proceedings of the 36th
International Conference on Software Engineering,
Future on Software Engineering Track, 2014.

M. Striebeck. Ssh! we are adding a process... In
Proceedings of the Conference on AGILE 2006,
AGILE ’06, pages 185-193, Washington, DC, USA,
2006. IEEE Computer Society.

J. Sutherland, C. Jakobsen, and K. Johnson. Scrum

and cmmi level 5: The magic potion for code warriors.

In Agile Conference (AGILE), 2007, pages 272-278,
2007.

D. A. Tamburri. Supporting Networked Software
Development. PhD thesis, Vrije University
Amsterdam, 2014.

D. A. Tamburri, R. De Boer, E. Di Nitto, P. Lago,
and H. v. Vliet.

12

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Dynamic networked organizations for software
engineering. In Proceedings of the 2013 International
Workshop on Social Software Engineering, SSE 2013,
pages 5—12, New York, NY, USA, 2013. ACM.

D. Tamburrri, P. Lago, and H. Van Vliet.
Organizational social structures for software
engineering. ACM Computing Suveys, 46(1), 2014.
E. Trist and K. Bamforth. Some social and
psychological consequences of the longwall method of
coal getting. Human Relations, 4:3-38, 1951.

L. G. Votta and A. Porter. Experimental software
engineering: A report on the state of the art. In
Proceedings of the 17th International Conference on
Software Engineering, ICSE 95, pages 277-279, New
York, NY, USA, 1995. ACM.

J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden,
and R. Heldal. Industrial adoption of model-driven
engineering: Are the tools really the problem? In
Model-Driven Engineering Languages and Systems -
16th International Conference, MODELS 20183,
Miami, FL, USA, September 29 - October 4, 2013.
Proceedings, volume 8107 of Lecture Notes in
Computer Science, pages 1-17. Springer Berlin
Heidelberg, 2013.

C. Wohlin, M. Hést, and K. Henningsson. Empirical
research methods in software engineering. In

R. Conradi and A. I. Wang, editors, ESERNET,
volume 2765 of Lecture Notes in Computer Science,
pages 7-23. Springer, 2003.

W. Wu, W.-T. Tsai, and W. Li. An evaluation
framework for software crowdsourcing. Frontiers of
Computer Science, 7(5):694-709, 2013.

L. Yilmaz. Modelling software processes as
human-centered adaptive work systems. In

P. Abrahamsson, N. Baddoo, T. Margaria, and

R. Messnarz, editors, Software Process Improvement,
volume 4764 of Lecture Notes in Computer Science,
pages 148-159. Springer Berlin Heidelberg, 2007.

