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Abstract—DevOps is an emerging paradigm to tightly inte-
grate developers with operations personnel. This is required
to enable fast and frequent releases in the sense of continu-
ously delivering software. Users and customers of today’s Web
applications and mobile apps running in the Cloud expect
fast feedback to problems and feature requests. Thus, it is a
critical competitive advantage to be able to respond quickly.
Beside cultural and organizational changes that are necessary to
implement DevOps in practice, tooling is required to implement
end-to-end automation of deployment processes. Automation is
the key to efficient collaboration and tight integration between
development and operations. The DevOps community is con-
stantly pushing new approaches, tools, and open-source artifacts
to implement such automated processes. However, as all these
proprietary and heterogeneous DevOps automation approaches
differ from each other, it is hard to integrate and combine them
to deploy applications in the Cloud. In this paper we present
a systematic classification of DevOps artifacts and show how
different kinds of artifacts can be transformed toward TOSCA,
an emerging standard in this field. This enables the seamless and
interoperable orchestration of arbitrary artifacts to model and
deploy application topologies. We validate the presented approach
by a prototype implementation, show its practical feasibility by
a detailed case study, and evaluate its performance.
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I. INTRODUCTION

The traditional split between developers and operations
found in many organizations today is a major obstacle for fast
and frequent releases of software. This is due to different goals,
contrary mindsets, and incompatible processes owned by these
two groups. For instance, developers want to push changes
into production as fast as possible, whereas the operations
personnel’s main goal is to keep production environments
stable [1]. For this reason, collaboration and communication
between developers and operations personnel is mainly based
on slow, manual, and error-prone processes. Consequently, it
takes a significant amount of time to put changes, new features,
and bug fixes into production. However, especially users and
customers of Web applications and mobile apps expect fast
responses to their changing and growing requirements. Thus, it
is a competitive advantage to implement automated processes
to enable fast and frequent releases. But this is only possible
by closing the gap between development and operations.
DevOps [2] is an emerging paradigm to bridge this gap between
these two groups, thereby enabling efficient collaboration.

Beside organizational and cultural challenges to eliminate the
split, the deployment process needs to be highly automated
to enable continuous delivery of software [3]. The constantly
growing DevOps community supports this by providing a huge
variety of individual approaches such as tools and artifacts to
implement holistic deployment automation. Reusable DevOps
artifacts such as scripts, modules, and templates are publicly
available to be used for deployment automation. Juju charms
and bundles1 as well as Chef cookbooks2 are examples for
these [4], [5]. In addition, Cloud computing [6], [7] is heavily
used to provision the underlying resources such as virtual
servers, storage, network, and databases. DevOps tools and
artifacts can then configure and manage these resources. Thus,
end-to-end deployment automation is efficiently enabled by
using the DevOps approaches in Cloud environments.

However, DevOps artifacts are usually bound to certain
tools. For instance, Chef cookbooks require a Chef runtime,
whereas Juju charms need a Juju environment to run. This
makes it challenging to reuse different kinds of heterogeneous
artifacts in combination with others. Especially when systems
have to be deployed that consist of various types of components,
typically multiple of management tools have to be combined:
they typically focus on different kinds of middleware and
application components. Thus, there is a variety of solutions
and orchestrating the best of them requires to integrate the
corresponding tools, e.g., by writing workflows or scripts that
handle the individual invocations, the parameter passing, etc.
However, this is a difficult, costly, and error-prone task as
there is no means to do this integration in a standardized
manner, supporting interoperability of the orchestrated artifacts.
Therefore, the goal of our work is to enable the seamless
integration of different kinds of DevOps artifacts based on the
emerging OASIS standard TOSCA (Topology and Orchestration
Specification for Cloud Applications) [8]. In this paper we
present the major contributions of our work:

• We present an initial classification of DevOps artifacts
and outline their usage

• We show a generic methodical framework to transform
DevOps artifacts into standards-based TOSCA models
that can be orchestrated arbitrarily to model and deploy
new applications

1Juju Charm Store: http://jujucharms.com
2Chef Supermarket: https://supermarket.getchef.com
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Figure 1. Web shop application and database topology

• We apply the presented framework to implement
transformation methods that generate reusable and
interoperable TOSCA models for two different DevOps
approaches: Juju charms and Chef cookbooks

• We evaluate our framework and the implementations
of the transformation methods based on the motivating
scenario

The remainder of this paper is structured as follows:
Section II describes the problem statement and presents a
motivating scenario that is used as a running example. The
fundamentals to understand our work is shown in Section III, in-
cluding a classification of DevOps artifacts and the explanation
of Chef, Juju, and TOSCA. The core of our work, namely the
transformation framework and method as well as the technical
transformations for Chef and Juju are shown in Section IV.
Based on the motivating scenario, Section V presents an evalu-
ation of our framework and our implementation. Section VI
and Section VII present related work and conclude the paper.

II. PROBLEM STATEMENT AND MOTIVATING SCENARIO

The DevOps community actively shares open-source ar-
tifacts such as scripts, modules, and templates to deploy
middleware and application components. Their portability
and community support make them a predestined means to
reuse them to automate the deployment of different kinds
of applications, especially Web applications and Web-based
back-ends for mobile apps. As long as only a single type of
artifacts is used, the artifacts are typically interoperable and
a single corresponding tooling may be utilized, e.g., a Chef
runtime for Chef cookbooks. However, using and combining
artifacts of different kinds such as Chef cookbooks and Juju
charms in a seamless manner is a major challenge. Extra effort
is required to learn and integrate all their peculiarities such
as invocation mechanisms, state models, parameter passing,
etc. In addition, the orchestration of different artifacts and
tools must be implemented using workflows or scripts that
integrate them on a very low-level of abstraction. This requires
deep technical insight in the corresponding technologies and
the overall orchestration approach. Typically, a lot of glue
code is required that makes the overall orchestration hard to
understand and maintain for non-experts. In the following we
show a motivating scenario as a concrete example to confirm
the necessity of integrating different kinds of artifacts.

Figure 1 shows a part of the topological structure of the
Web shop application inspired from [9]. The application itself
is hosted on an Apache HTTP server and depends on the
PHP module; the database of the application is hosted on a
MySQL master/slave environment to improve the application’s
scalability and to enable high availability of the database: data
that are written to the master instance are consistently replicated
to the slave instances, so reading requests can be load-balanced
between slave instances. In case the master instance breaks, a
slave instance can be selected to be the new master instance.
The underlying infrastructures and/or platforms could be chosen
depending on certain requirements or preferences. For instance,
the Apache and MySQL servers could be hosted on virtual
machines provided by Amazon Web Services3. To implement
deployment automation for this application we want to reuse
existing DevOps artifacts, especially to deploy the middleware
components. For instance, Chef cookbooks may be used to
deploy the Apache HTTP server and the PHP module, assuming
that these are running on a single virtual machine. However,
there is no Chef cookbook to deploy a complete MySQL
master/slave environment out of the box. Consequently, we may
better use the MySQL charm4 shared by the Juju community
to deploy and dynamically scale such a MySQL setup. This
adds another kind of artifact to the deployment automation
implementation, implying the learning, usage, and orchestration
of additional tooling to handle and execute corresponding
artifacts. Finally, we may have implemented custom Unix shell
scripts to meet specific deployment and operations requirements
of our Web shop application and its database. These scripts are
used to deploy the application-specific parts of the topology.
Consequently, there is yet another kind of artifact involved in
the deployment automation process that needs to be integrated,
too. Thus, three different kinds of deployment tools must
be combined to deploy the application efficiently by reusing
existing artifacts that are optimally suited.

Cloud standards such as TOSCA tackle this challenge
of seamlessly integrating and combining different kinds of
artifacts by introducing a unified meta model. TOSCA modeling
artifacts can be used and composed seamlessly to create
application models that can be deployed automatically. TOSCA
is an emerging standard, but it still lacks an ecosystem of
communities and reusable artifacts. However, an ecosystem
based on open-source communities is key to establish TOSCA
in practice [10], [11]. Because the DevOps community provides
such an ecosystem but is mostly based on individual and
proprietary approaches, the goal of our work is to transform
existing DevOps artifacts toward TOSCA to make them reusable
and composable in a seamless and interoperable manner. To
provide all required information for understanding our approach,
the following section provides a classification of DevOps
artifacts and explains the basic modeling constructs of TOSCA.

III. FUNDAMENTALS

In this section we discuss the fundamentals on which our
work is based. Section III-A provides an initial classification
of DevOps artifacts to clarify their conceptual and technical
differences. We consider a representative of each class in
our further discussions. TOSCA’s most important concepts

3Amazon Web Services: http://aws.amazon.com
4MySQL charm: http://jujucharms.com/precise/mysql-46
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Figure 2. Initial classification of DevOps artifacts

and modeling constructs are presented in Section III-D as a
foundation to discuss the transformation in Section IV.

A. Classification of DevOps Artifacts

As discussed in Section II, there is a huge and ever-
growing amount and variety of artifacts shared by the DevOps
community to deploy middleware and application components.
Because these artifacts differ in how they are designed and
how they are used, Figure 2 presents an initial classification of
DevOps artifacts based on two major classes:

1) Node-centric artifacts (NCAs) are scripts, images,
modules, declarative configuration definitions, etc.
that are executed on a single node such as a physical
server, a virtual machine (VM), or a container [12],
[13]. Cross-node relations such as an application
component connecting to a database running on
another node are not explicitly expressed and
implemented. Consequently, NCAs are not meant to
be used to deploy complete application topologies.

2) Environment-centric artifacts (ECAs) are scripts, bun-
dles, templates, etc. that are executed in an envi-
ronment, potentially consisting of multiple nodes.
Cross-node relations are explicitly expressed and
implemented. Consequently, ECAs can be used to
deploy complete application topologies.

Unix shell scripts, Chef cookbooks, Puppet modules5,
SaltStack modules6, and Docker images7 are a few prominent
examples for NCAs. In terms of ECAs, Juju charms and
bundles, Amazon CloudFormation templates8, and OpenStack
Heat templates9 are representatives of this class of artifacts.
However, node-centric and environment-centric artifacts are
not meant to be used exclusively. In fact, ECAs typically use
and orchestrate NCAs. For instance, Juju charms utilize Unix
shell scripts to install, configure, and wire software components
on VMs. Moreover, Amazon CloudFormation templates10 can
utilize Chef cookbooks to implement deployment logic. Beside
the orchestration of NCAs using ECAs, additional management
tooling can be utilized to enable the environment-centric usage
of NCAs. As an example, Marionette Collective11 to manage

5Puppet Forge: https://forge.puppetlabs.com
6SaltStack modules: http://goo.gl/l1mcnr
7Docker Hub Registry: http://index.docker.io
8Amazon CloudFormation templates: http://goo.gl/NzOe3
9OpenStack Heat: http://wiki.openstack.org/wiki/Heat
10Integration of Amazon CloudFormation with Chef: http://goo.gl/pOsU0
11Marionette Collective: http://docs.puppetlabs.com/mcollective

the distribution and execution of Chef cookbooks in large-
scale environments, providing consistent, environment-specific
context information to the nodes and NCAs involved. Docker
ambassador containers12 are another means to distribute and
host containers based on Docker images [14] in a multi-node
environment, e.g., consisting of several VMs.

The presented classification based on NCAs and ECAs
is the foundation for our transformation approach. There are
several other aspects that may be considered when choosing
corresponding artifacts to implement deployment automation.
These aspects include:

• Level of dependencies: some artifacts are provider-
dependent such as CloudFormation templates, i.e., they
can only be used in combination with a certain provider
such as Amazon in this case. Other artifacts are tooling-
dependent such as Chef cookbooks or Juju charms: they
can be used in conjunction with different providers,
but require certain tooling such as a Chef runtime or
a Juju runtime.

• Level of virtualization: artifacts may depend on certain
virtualization solutions such hypervisor-based virtual-
ization (e.g., Amazon machine images) or container
virtualization (e.g., Docker images) [13].

• Especially environment-centric artifacts can be dis-
tinguished in infrastructure-centric vs. application-
centric artifacts. Infrastructure-centric artifacts such as
CloudFormation templates focus on the configuration
and orchestration of infrastructure resources such as
VMs, storage, and network. Juju bundles are much
more application-centric by focusing on the configura-
tion and orchestration of middleware and application
components and transparently managing the underlying
infrastructure.

• There are definition-based artifacts such as Chef cook-
books and Puppet modules, defining the configuration
of resources such as VMs or containers. On the other
hand image-based artifacts such as Docker images
capture the state of a certain resource to create new
instances by restoring the persisted state on demand.

• Definition-based artifacts can be created in a declara-
tive, in an imperative, or in a combined manner. For
instance, Chef cookbooks typically define the desired
state of a resource using a declarative domain-specific
language [4], [15]. However, imperative statements can
also be part of such artifacts. Unix shell scripts typically
consist of a set of imperative command statements.

In the following we explain Chef and Juju in more detail
to highlight how NCAs (Chef cookbooks) and ECAs (Juju
charms) are used in practice. Chef and Juju are representatives
for their corresponding class. Moreover, we refine the posi-
tioning of these two approaches regarding the classification
aspects discussed in this section. Our technical transformation
implementations are based on Chef and Juju as we will discuss
in Section IV-A and Section IV-B.
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Figure 3. Chef overview: artifacts, components, and interrelations

B. Chef

Chef [4], [5] is a configuration management framework that
provides a domain-specific language (Chef DSL) based on Ruby.
The Chef DSL is used to define configurations of resources such
as VMs. These configuration definitions are called recipes. Mul-
tiple recipes are bundled in cookbooks. For instance, a MySQL
cookbook may provide the recipes install server, install client,
and install all to deploy the corresponding components of
MySQL. The definition of declarative expressions such as
ensure that MySQL server is installed is the recommended
way to define portable configurations in recipes. However,
imperative expressions such as system command statements
(e.g., “apt-get install mysql-server”) can be used,
too. Figure 3 provides an overview of the core concepts of
Chef: the Chef server acts as a central management instance
for the recipes, run lists, and attributes. Each node has a run
list and a set of attributes assigned. The run list of a particular
node specifies which recipes have to be executed on this node.
Because most recipes are created to be used in different ways,
they have some variability points such as the version number
of the mysql package as shown in the sample recipe in Figure 3.
To resolve these variability points at execution time, attribute
definitions such as mysql ver = ‘5.5’ can be assigned to a node.
These attributes can be read during execution time. Finally, a
Chef workstation runs knife13 to control the Chef server as
well as all nodes and data that are registered with the Chef
server. To sum it up: according to our classification aspects
presented in Section III-A, Chef is a tooling-dependent but
not provider-dependent solution that supports different levels
of virtualization: Chef recipes can be executed on physical
servers, VMs, and containers. Chef is infrastructure-centric
because it focuses on the distribution and execution of recipes
on infrastructure resources such as VMs. Because Chef recipes
are typically declarative scripts, although they may include
imperative statements as well, Chef follows the idea of creating
and maintaining definition-based artifacts. Chef recipes are
node-centric artifacts because they run in the scope of a single
node.

12Docker ambassador containers: http://goo.gl/PzGfcH
13Chef knife: http://docs.opscode.com/knife.html
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Figure 4. Juju overview: artifacts, components, and interrelations

C. Juju

In contrast to Chef, Juju14 follows an environment-centric
approach to implement configuration management and deploy-
ment automation. Charms contain scripts to implement a well-
defined lifecycle of a certain component such as a MySQL
server. For instance, scripts to install, start, and stop a MySQL
server are contained in the MySQL charm. The lifecycle scripts
can be implemented in an arbitrary language (Python, Ruby,
Unix shell, etc.), as long as the resulting scripts are executable
on the target nodes. Juju does not prescribe the usage of
any domain-specific language to create these scripts. Figure 4
denotes the environment-centric focus of Juju: charm instances
and their configurations live in a certain environment such as
an interconnected set of VMs hosted at Amazon Web Services.
Charm instances can be linked such as an application component
that is connected to a database. These links are explicitly
expressed and can be configured. In contrast to Chef, charms
and charm instances are the main entities; the underlying nodes
and the scripts that are executed on them provide the required
infrastructure to host the charm instances. It is important to
denote that a charm instance is not limited to the scope of
a single node. For instance, to deploy a multi-node MySQL
database server in a master/slave setup, a single charm instance
can be used that is scaled in and out by adding and removing
units. An example is shown in Figure 5, where the MySQL
charm instance is hosted on three VMs. By default, one unit
is one VM. When a new charm instance is created, it initially
consists of one unit.

Beside the VMs that host units for the charm instances, a
management node runs in each environment to deploy, manage,
and monitor the charm instances. Conceptually, the management
node can be compared to a Chef server. However, each
environment requires its own management node, so different
environments are independent of each other. Interconnections
between management nodes are currently not supported, so
multi-Cloud applications are difficult to deploy and manage
by Juju. A Juju command-line interface (CLI) is provided to
control both the management node and the environment itself,
e.g., to configure security aspects such as firewalls. Different
environments can be managed based on different infrastructures

14Ubuntu Juju: https://juju.ubuntu.com
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Figure 5. Juju sample: MySQL and WordPress running at Amazon

(OpenStack [16], Amazon Web Services, Microsoft Azure, HP
Cloud, etc.). Moreover, the Juju CLI tool is used to manage
and retrieve charms from public and private charm stores.
This is the foundation for creating charm instances in any
environment. Based on our classification aspects outlined in
Section III-A, Juju is a tooling-dependent solution, currently
mostly focused on hypervisor-based virtualization because
VMs are the unit of currency. Contrary to Chef, Juju can
be considered as application-centric because the underlying
infrastructure and scripts are abstracted by charms and charm
instances. Furthermore, charms are environment-centric artifacts
because links between them are explicitly expressed and
can be configured. Charms are definition-based because of
their lifecycle scripts that are typically implemented using
imperative scripting languages. However, links between charms
are expressed in a declarative manner by defining requirements
that can be met by certain capabilities provided by other charms.

In terms of integration, Chef recipes could be reused as
NCAs to implement the lifecycle scripts of Juju charms, which
are ECAs. However, the integration requires deep technical
knowledge of both approaches (state models, parameter passing,
invocation mechanisms, etc.) and couples them tightly. If
even further approaches and technologies come into play,
all these have to be integrated separately. Consequently, a
common, standardized intermediate meta model is required to
efficiently and seamlessly integrate different approaches and
technologies. In the following Section III-D we introduce the
Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [8] that fulfills these meta model requirements.

D. TOSCA

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [8] is an emerging standard, supported
by several companies in the industry15. Its main goal is to
enhance the portability and management of Cloud applications.
Technically, TOSCA is specified using an XML schema
definition. Topology templates are defined as graphs consisting
of nodes and relationships to specify the topological structure
of an application as, for instance, shown in Section II (Figure 1).
As a foundation for defining such templates, node types and
relationship types are defined as shown in Figure 6. These are
used to create corresponding node templates and relationship
templates based on them in the topology template. A complete
type system can be introduced because types may be derived
from other existing types in the sense of inheritance as it
is used, for instance, in object-oriented programming. As an

15TOSCA tech. committee: https://www.oasis-open.org/committees/tosca
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Figure 6. Type definitions and templates in TOSCA

example, an abstract Java Servlet Container node type can be
defined, which has a child node type Apache Tomcat. There
could be further node types derived from this one, such as
Apache Tomcat 6.0, Apache Tomcat 7.0, etc.

Types consist of further sub-elements: operations are
attached to nodes and relationships, for instance, to cover their
lifecycle (install, start, stop, etc.). In addition, further man-
agement operations may be defined such as backup database
and restore database. These operations are implemented by
implementation artifacts (IAs), which could be, for instance,
Chef recipes or Unix shell scripts. An IA is executed when
the corresponding operation is invoked, e.g., by the TOSCA
runtime environment. Operations belonging to relationships
are distinguished in source operations and target operations
because a relationship links a source node with a target node.
Source operations are executed on the source node, target
operations on the target node. To enable the linking of nodes
and relationships, they expose requirements and capabilities
that are used for matchmaking purposes. For instance, a
Java application node may expose a Java Servlet Runtime
requirement, whereas the the Apache Tomcat node provides
a matching Java Servlet Runtime capability. A relationship
specifying the Java Servlet Runtime requirement as valid source
and the Java Servlet Runtime capability as valid target can be
used to wire the two nodes. Properties can be defined as
arbitrary data structures in XML schema to make nodes and
relationships configurable. As an example, the Apache Tomcat
node may provide a property to specify the directory where
the log files should be written to. All properties are exposed
to the operations and their IAs, so they can be considered
during execution. Finally, TOSCA specifies the structure of
Cloud Service Archives (CSAR) as a portable, self-contained
packaging format for Cloud applications. Not only the XML
definitions of types and templates are part of a CSAR; it also
contains all scripts and files that are referenced, e.g., as IAs.
Consequently, a CSAR is self-contained, enabling a TOSCA
runtime environment to process it by traversing the topology
template to create application instances. Each node provides
lifecycle operations such as install that are called when the
topology template gets traversed to create instances of the nodes
and relationships on a real infrastructure. TOSCA supports
the deployment and management of applications modeled as
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topology templates by two different flavors: (i) imperative
processing and (ii) declarative processing [17]. The imperative
approach employs so called management plans that orchestrate
the management operations provided by node and relationship
types. Thus, they execute the implementation artifacts that are
attached to the corresponding operation. These plans can be
executed automatically and are typically implemented using
workflow languages such as BPEL [18], BPMN [19], or the
BPMN extension BPMN4TOSCA [20]. To enable completely
self-contained CSARs, management plans can be stored directly
in the corresponding CSAR. Thus, imperative TOSCA runtime
engines run these plans to consistently execute management
tasks. In contrast to the imperative approach, the declarative
approach does not require any plans: a declarative TOSCA
runtime engine derives the corresponding logic automatically
by interpreting the topology template. We do not distinguish
between the two flavors in the following as our approach
is agnostic to this difference: it transforms DevOps artifacts
to TOSCA implementation artifacts that can be either (i)
orchestrated using management plans or (ii) used by declarative
engines.

IV. TRANSFORMATION FRAMEWORK AND METHOD

In order to transform arbitrary DevOps artifacts of different
classes toward TOSCA to make them usable and compos-
able in a seamless and interoperable manner, we present a
transformation framework and method as shown in Figure 7.
The initial step is the manual selection of artifacts such as
Chef recipes, Juju charms, and Docker images to be used for
a specific application. This selection may be driven by the
individual middleware requirements of the application, e.g.,
a PHP-based Web application requires a PHP runtime and
it may need a MySQL database. Based on the selection, the
artifacts are automatically retrieved, e.g., from the public Juju
charm store. Then, all dependencies of the retrieved artifacts
are checked automatically. As a result, further artifacts may
have to be retrieved to resolve these dependencies. These
artifacts may have further dependencies that need to be resolved
afterward. Therefore, the method iterates these two steps until
all dependencies are resolved. In the next step, TOSCA node
types and relationship types are generated based on the selected
and retrieved artifacts. This is the technical transformation of
DevOps artifacts toward TOSCA. The transformation logic
is highly specific to the individual DevOps approaches. In
the following Section IV-A and Section IV-B we explain the
technical transformations for Chef and Juju in more detail.
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After the technical transformations have been performed and the
TOSCA types were generated, these can be used in the context
of appropriate modeling tooling such as Winery [21] to build
TOSCA application models using topology templates. Such an
application model can be packaged as CSAR to deploy it using
a TOSCA runtime environment such as OpenTOSCA [22].
Alternatively, to refine the model, additional artifacts may have
to be selected and retrieved, including dependency resolution
to generate additional TOSCA types. This may be the case if
the application requires additional components that cannot be
covered by artifacts selected before. The usage of a TOSCA
modeling tool in conjunction with the generated artifacts is
not limited to building application models. For instance, the
generated node types can be enriched by attaching additional
management operations and corresponding IAs.

A. Technical Transformation of Chef Cookbooks

The technical transformation of DevOps artifacts to TOSCA
types is the core of our transformation framework described
before in Section IV. In this section we present the concepts
of a technical transformation of Chef cookbooks that bundle
Chef recipes. We provide two different alternatives to perform
the transformation of Chef cookbooks: (i) the fine-grained
transformation and (ii) the coarse-grained transformation. As
shown in Figure 8 for the fine-grained approach, a node type
is created for each selected cookbook. Each recipe is attached
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Figure 9. Coarse-grained transformation: dependencies packaged as IAs

to the generated node type as an IA that implements a certain
operation as discussed in [23]. A single node type capability
is generated for each cookbook consisting of the cookbook
name. Each cookbook owns a metadata.rb file that contains
information such as name, version, and maintainer of the
cookbook. Moreover, all dependencies on other cookbooks are
defined inside the metadata.rb file. For each dependency a
corresponding requirement is generated. Relationship types are
not required to be generated because Chef does not support
modeling of relationships explicitly. Thus, a generic depends
on relationship can be used to wire nodes derived from
node types that were generated from cookbooks. Finally, the
attributes definitions (*.rb files) stored in the attributes
sub-directory of a cookbook is used to derive the node type
properties. These are used to configure node templates derived
from the node type, influencing the execution of the operations.

As an alternative, the coarse-grained transformation of
Chef cookbooks is shown in Figure 9: node types are only
generated for the selected cookbooks. The cookbooks that are
dependencies are packaged inline as implementation artifacts.
Consequently, the dependencies do not appear as separate node
types and one node type may wrap multiple cookbooks. The
main motivation for this is the fact that cookbooks and their de-
pendencies may be very fine-grained. For instance, the Apache
HTTP server cookbook16 depends on the cookbooks logrotate,
iptables, and pacman. These are operating system-level software
packages that are not supposed to appear in the application
topology (as individual nodes), which rather models more
coarse-grained middleware and application components such as
Web servers and databases. The coarse-grained transformation
skips the creation of low-level node types, avoiding a pollution
of topologies. We can also combine the two transformation
approaches by specifying which cookbooks are too low-level
to be exposed as separate node types. Consequently, these
are transparently packaged as implementation artifacts without
generating individual node types.

Other node-centric solutions and their artifacts such as
Puppet [24] and CFEngine [25] work very similar to how Chef

16Apache cookbook: https://supermarket.getchef.com/cookbooks/apache2
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Figure 10. Transformation of Juju charms

works. Consequently, the technical transformations discussed
in this section can be transferred to be applied to these artifacts,
too. In the following Section IV-B we discuss how Juju charms
as environment-centric artifacts can be technically transformed
to get TOSCA types.

B. Technical Transformation of Juju Charms

The transformation of environment-centric artifacts such as
Juju charms is slightly more complex than what we discussed
before for Chef cookbooks. This is because relationships have to
be considered as separate entities with own operations and IAs
to link different nodes in an application topology. In case of Juju,
a separate node type is generated for each charm (Figure 10).
The operations and their IAs are derived from the charm’s
lifecycle scripts. Each charm owns a metadata.yaml file
describing its interfaces that it requires and provides. Based
these interface descriptions, requirements and capabilities are
attached to the generated node types. Furthermore, relationship
types are generated for each requirement-capability pair because
charms typically contain further lifecycle scripts that need to
be executed when a relationship is established or changed
(lifecycle of the relationship). Lifecycle scripts that need
to be executed on the source node are mapped to source
operations in the generated relationship type; scripts that are
supposed to be executed on the target node result in target
operations. Each relationship type defines the corresponding
requirement (exposed by a source node) as valid source and the
matching capability (exposed by a target node) as valid target.
Consequently, the generated relationship type can be used to
connect two nodes by matching the requirement of the source
node with the capability of the target node. Similar to Chef’s
attributes the config.yaml file of each charm provides a
description of its configuration options. These are used to attach
corresponding property definitions to the generated types.

The discussed concepts to transform Juju charms to TOSCA
types may be transferred to other environment-centric artifacts
such as Amazon CloudFormation templates or OpenStack Heat
templates. To confirm the added value of our transformation
concepts, we present our evaluation of both technical transfor-
mations for Chef and Juju in the following Section V.
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Table I. DERIVED TOSCA NODE TYPES AND RELATIONSHIP TYPES

Original Artifacts Derived TOSCA Types Attached Requirements Attached Capabilities Attached Operations

Web shop app. deployment script Node Type: Web shop application - Web server — - deploy

- PHP runtime

- Web shop database

Web shop database deployment script Node Type: Web shop database - MySQL database server - Web shop database - deploy

- backup-db

- restore-db

Web shop database connection script Rel. Type: Web shop app. connects to database - Web shop database - Web shop database - connect

(valid source) (valid target)
Apache cookbook Node Type: Apache HTTP server - Operating system - Web server - deploy

PHP cookbook Node Type: PHP module - Operating system - PHP runtime - deploy

- Apache HTTP server

(derived from Web server)
MySQL charm Node Type: MySQL server - Cloud infrastructure - MySQL database server - deploy

- MySQL master server

(only for slave servers)

Rel. Type: MySQL master connects to slave - MySQL master server - MySQL database server - connect
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Figure 11. Web shop deployment automation using different kinds of artifacts

V. EVALUATION

In this section we present our evaluation of (i) the overarch-
ing transformation framework introduced in Section IV, (ii) the
technical transformation of Chef cookbooks as discussed in
Section IV-A, and (iii) the technical transformation of Juju
charms (Section IV-B). We therefore implemented prototypes
in Java as executable JAR files to perform the technical
transformations presented before. The evaluation is based on
the topology of the Web shop application outlined as motivating
scenario in Section II.

A. Case Study & Performance Measurements

According to the method that we presented as part of our
transformation framework (Section IV), the first step is the
selection of DevOps artifacts to be used to deploy the Web shop
application. To deploy the middleware required by the Web shop
application, we reuse the Apache cookbook17 and the PHP cook-
book18 as shown in Figure 11. For the database part we cannot

17Apache cookbook: https://supermarket.getchef.com/cookbooks/apache2
18PHP cookbook: https://supermarket.getchef.com/cookbooks/php

just reuse the MySQL cookbook19 because it does not support
a distributed master/slave deployment out of the box. This is
why we choose the MySQL charm20 to deploy the MySQL
database server in a distributed manner. The deployment of
the application-specific parts (Web shop application, database,
and the application-database connection) is implemented using
custom Unix shell scripts. The underlying infrastructure is
provisioned by associated tooling such as Chef knife and the
Juju CLI tool. After retrieving all artifacts and resolving all
dependencies we utilize our prototype implementations of the
technical transformations to generate TOSCA node types and
relationship types (Table I). In order to quantitatively evaluate
the transformation we run the transformation for each artifact
(Apache cookbook, PHP cookbook, and MySQL charm) ten
times. The transformations were executed on a virtual machine
(1 virtual CPU clocked at 2.8 GHz, 2 GB of memory) on top
of the VirtualBox hypervisor, running a minimalist installation
of the Ubuntu OS, version 14.04. The average transformation
time and the standard deviation for each artifact based on our
measurements is shown in Table II. Beside the actual model
transformation the measured time includes the retrieval of the
artifacts and all their dependencies from code repositories such
as Git. Moreover, the packaging of the generated artifacts
into Cloud Service Archives (CSARs) is also included in
the measured time. The transformation of cookbooks should
be faster because no relationship types are created. However,
cookbook dependencies have to be retrieved separately because
they are distributed across different repositories. This is why
the transformation times are in the same order of magnitude.
For the application-specific parts (Web shop application and
database) we created additional types to cover the complete
Web shop topology. In addition, two generic relationship types
are available: hosted on and depends on. These are used to
logically wire nodes in a topology if no specific implementation
or operations are required. Finally, we use Winery [21] as a
TOSCA modeling tool to build a topology template for the Web

19MySQL cookbook: https://supermarket.getchef.com/cookbooks/mysql
20MySQL charm: http://jujucharms.com/precise/mysql-46
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Table II. TRANSFORMATION TIME MEASUREMENTS

Apache cookbook PHP cookbook MySQL charm

Generated Apache HTTP server PHP module MySQL server

Node Types:
Generated — — MySQL master

Rel. Types: connects to
MySQL slave

Average
Transformation 31.6 seconds 25.8 seconds 26.5 seconds

Time:
Standard
Deviation: 0.7 seconds 0.5 seconds 0.2 seconds

shop application based on the generated TOSCA types. The
complete topology template, including all type definitions and
IAs is exported as a self-contained TOSCA-compliant Cloud
Service Archive (CSAR). The Web shop CSAR can then be
deployed using any TOSCA-compliant runtime environment,
for instance, OpenTOSCA [22].

B. Standards-based Open-Source End-to-End Prototype

To prove the practical feasibility of the presented approach,
we implemented the technical transformations presented in Sec-
tion IV-A and Section IV-B as a prototype in Java (executable
JAR files). This prototype can be used in conjunction with our
open-source TOSCA ecosystem OpenTOSCA. This ecosystem
consists of the (i) OpenTOSCA runtime environment [22],
which can be used to run TOSCA-based applications, (ii) the
modelling tool Winery [21], which provides an editor to model
topologies, and (iii) Vinothek [26], a Web-based self-service
portal for users to provision applications using the OpenTOSCA
runtime environment. However, to create new node and re-
lationship types using Winery, this must be done manually
by (i) defining the types, management interfaces, operations,
and properties, (ii) attaching the corresponding implementation
artifacts, e.g., in the form of Juju charms, and (iii) linking
the interfaces and operations with the implementation artifacts
accordingly. This is a time-consuming, difficult, and error-
prone task. The approach presented in this paper supports this
task by generating the corresponding TOSCA elements fully
automatically based on existing community artifacts such as
Chef cookbooks. Thus, our approach significantly eases the
development of new node and relationship types, which makes
the whole development process of TOSCA-based applications
very efficient. As a result, together with the existing ecosystem,
the approach supports our open-source end-to-end TOSCA
toolchain for modeling, deploying, and managing applications.

VI. RELATED WORK

Model transformations play a key role in different domains
such as model-driven architectures and model-driven devel-
opment [27]. According to [28] three major transformation
strategies can be distinguished: (i) the direct model manipula-
tion is a way to immediately modify an existing source model
in order to transform it to the target model. (ii) Alternatively,
an intermediate representation can be used to render models
in a general-purpose markup language such as XML. (iii) A
transformation language providing constructs to express and
apply transformations may be used to drive such model

transformations. In our work we focus on the intermediate
representation of transformed models based TOSCA and
rendered in XML.

In this paper we were mostly focusing on the model-
ing part of Cloud applications based on TOSCA. Related
work [23], [29] presents approaches to deploy and manage
Cloud applications that are modeled based on TOSCA and
our transformation framework. There are several alternatives to
TOSCA such as CloudML [30], Blueprints [31], and enterprise
topology graphs [32]. Moreover, pattern-based deployment
approaches [33] utilize a proprietary meta model based on Chef
to transform patterns to deployable artifacts. Because TOSCA
is an emerging standard and tooling support is improving
as well, we decided to use TOSCA as an interoperable,
intermediate meta model. Further orchestration approaches
are originating in the DevOps community such as Amazon
OpsWorks [34], Terraform21, and DevOpSlang [35]. These
can be utilized to orchestrate the transformed artifacts in a
more seamless and interoperable manner. In addition to pure
deployment automation approaches that are mainly targeting
the level of infrastructure-as-a-service, different platform-as-a-
service (PaaS) frameworks and solutions are emerging such as
Heroku22, IBM Bluemix23, and Cloud Foundry24. These enable
the packaging of middleware and application components on a
higher level, mostly abstracting away infrastructure aspects such
as virtual servers and networking. Consequently, artifacts that
are packaged this way can be considered as environment-centric
artifacts. Corresponding transformation concepts discussed in
this paper may be transferred to these kinds of artifacts.

VII. CONCLUSION

The motivation of our work is based on the fact that a
huge number and variety of reusable DevOps artifacts are
shared as open-source software such as Chef cookbooks and
Juju charms. However, these artifacts are usually bound to
specific tools such as Chef, Juju, or Docker. This makes it
hard to combine and orchestrate artifacts of different kinds
in order to automate the deployment of Cloud applications
consisting of different middleware and application components.
In order to tackle this issue we decided to work on an automated
transformation framework to generate TOSCA standard-based
modeling artifacts from different kinds of existing DevOps
artifacts. As a foundation for our work we presented an
initial classification of DevOps artifacts, distinguishing between
node-centric and environment-centric artifacts. We presented
a generic transformation framework to be used to transform
arbitrary DevOps artifacts into TOSCA node types and re-
lationship types. These can then be used to create topology
templates for Cloud applications. TOSCA enables the seamless
and interoperable orchestration of arbitrary artifacts. Based
on our transformation framework we implemented technical
transformation methods for two different kinds of DevOps
artifacts, namely Chef cookbooks and Juju charms. Finally, we
evaluated our framework as well as the technical transformation
implementations based on our motivating scenario. In terms
of future work we plan to refine our proposed classification

21Terraform: http://www.terraform.io
22Heroku: https://www.heroku.com
23IBM Bluemix: http://bluemix.net
24Cloud Foundry: http://cloudfoundry.org
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of DevOps artifacts by considering and evaluating further
conceptual differences. Moreover, we plan to implement further
technical transformations based on our framework to be able to
extend the evaluation of our approach and to further verify that
our framework is generic enough to deal with very different
kinds of DevOps artifacts.
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F. Leymann, S. Moser, I. Schwertle, and T. Spatzier, “Integrating
Configuration Management with Model-Driven Cloud Management
Based on TOSCA,” in Proceedings of the 3rd International Conference
on Cloud Computing and Services Science. SciTePress, 2013.

[24] J. Loope, Managing Infrastructure with Puppet. O’Reilly Media, Inc.,
2011.

[25] D. Zamboni, Learning CFEngine 3: Automated System Administration
for Sites of Any Size. O’Reilly Media, Inc., 2012.
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