
October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

EVALUATING THE REUSABILITY OF SYSTEMS WITH

SHUFFLER DESIGN PATTERN

G PRIYALAKSHMI

Department of Applied Mathematics and Computaional Sciences, PSG College of Technology,

Coimbatore
priya venky2001@yahoo.co.in

R NADARAJAN

Department of Applied Mathematics and Computaional Sciences, PSG College of Technology,

Coimbatore

nadarajan psg@yahoo.co.in

JOSEPH W. YODER

The Refactory, Inc

joe@refactory.com

S ARTHI

Department of Applied Mathematics and Computaional Sciences , PSG College of Technology,

Coimbatore
arthi.sivakumar24@gmail.com

G JAYASHREE

Department of Applied Mathematics and Computaional Sciences , PSG College of Technology,
Coimbatore

jayaachu21@gmail.com

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

Modern software has become intricate and versatile due to the worldwide growth of
new software technologies. In this regard, the evolution of software quality metrics to

support software maintainability is studied. We analyze the impact of Shuffler design
pattern on software quality metrics. The Shuffler design pattern provides an alternate
design approach for shuffling. The impact of Shuffler design pattern on reusability of the

software systems is studied using various approaches. Firstly, object-oriented metrics

provide a method for empirical analysis of impact on software quality. A list of software
quality metrics, which has a higher influence on software reusability and maintainabil-

ity, are experimented on three gaming applications like Jigsaw, Poker and Scramble.
These gaming projects are redesigned using Shuffler design pattern and a combination
of other patterns and the impact on reusability is analysed. Secondly, the reusability of

the black-box components of the aforementioned projects is studied. The results with

high cohesion and low coupling values would help software designers in the industry to
be more confident in using the Shuffler pattern along with other design patterns. In a

1

Manuscript Click here to download Manuscript shufflerpaper.pdf 

http://www.editorialmanager.com/ijseke/download.aspx?id=23115&guid=466d5fd3-29b9-43a0-95f2-c9fbb8bb9ab0&scheme=1
http://www.editorialmanager.com/ijseke/download.aspx?id=23115&guid=466d5fd3-29b9-43a0-95f2-c9fbb8bb9ab0&scheme=1


October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

2 Authors’ Names

nutshell, the pattern helps to choose different shuffling behavior that helps the program
attain improved reusability.

Keywords: Design Patterns; Software Quality; Shuffler.

1. Introduction

The primary aim of design patterns is to achieve a good object oriented design that

provides reusability, maintainability and expandability of the systems. However the

use of design patterns does not necessarily result in a good design as discussed in

[4]. Thus in order to evaluate the impact of design patterns, an empirical analysis

of the pattern on various software quality attributes has to be studied. The justifi-

cation for the use of any design pattern concerns positive effect of software quality

attributes. Hence an analytical study of various patterns affecting software systems

is important as stated in [9]. Object oriented metrics provide theoretical results for

easier observation and evaluation of various systems.

The problem of interchange of position of objects in any application addressed

by the Shuffler design pattern [2] is evaluated in this paper. Real world applications

of shuffling includes shuffling questions and choices in quiz apps or online tests,

image shuffling in games, shuffling wallpapers in desktops, shuffling characters in

password generators etc.

In this work, we evaluate the reusability of object oriented systems with an

Eclipse plug-in, called Metrics. Three open source gaming projects Jigsaw puzzlea,

Pokerb and Scramblec are considered for experimental evaluation. These projects

are initially evaluated with the Metrics tool for object oriented design metrics, which

has an impact on the reusability and maintainability of these projects. The projects

are transformed into better design solutions with the help of Shuffler design pattern.

The gaming systems are modelled suitably using UML class diagrams. We studied

the impact of the Shuffler Design pattern on the three systems and the results are

tabulated. We also performed a combined analysis of Shuffler design pattern with

other related patterns. This will greatly help software designers to promote the us-

age of more patterns in their designs. The patterns adopted with Shuffler design

pattern were Singleton and Prototype patterns. The impact of these patterns on

the quality of software systems is tabulated. We also measured the reusability of the

three gaming systems at component level, with Shuffler design pattern applied. The

five metrics [3] discussed by Hironori Washizaki et al, fall within the confidence in-

terval. This justifies the increase in reusability of components designed with Shuffler

pattern, without the designer having the source code.

ahttp://zetcode.com/tutorials/javagamestutorial/puzzle/
bhttps://github.com/ethnt/poker
chttps://github.com/lisalisadong/cs-046/tree/master/problem sets/ps5/wordScramble



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

Evaluating the Reusability of Systems with Shuffler Design Pattern 3

2. Related Work

This section of the paper elucidates previous scientific research related to design

patterns. In 1977, Christopher Alexander described the repeated occurrence of prob-

lems in our environment and suggested to devise a common solution which can be

used for similar problems. In the year 1994, Gamma et al. offered the idea of de-

sign patterns, since then there has been a substantial increase in the use of design

patterns. There are significant numbers of research papers discussing the impact of

design patterns on quality. The probability that a class can be reused is a key qual-

ity characteristic in object-oriented design. After surveying the literature, Apostolos

Ampatzoglou et al. [10] have assessed the fundamental quality attributes that are

recorded to be decisive concerning the reusability of a system. The quality charac-

teristics which they listed were Cohesion, Coupling, Messaging, Size, Inheritance,

and Complexity. In 2012, Apostolos with his team [9] proposed a method to probe

designs where design patterns are implemented and compare them with designs

without patterns.

In their paper [1], Ivana Turnu et al. have analysed various releases of the open

source Eclipse and NetBeans software systems, calculating the entropy of Response

for Class and Coupling between Object Classes for every release analysed. They

have demonstrated a very high interdependence between the entropy of CBO and

RFC and the number of bugs for Eclipse and NetBeans. Peter Wendorff has as-

sessed design patterns during software reengineering [7] and has justified that the

incorrect usage of patterns can possibly fail. Ronald Jabangwe et al. have made

an elaborate Systematic Literature Review [12] to link the object oriented mea-

sures and external quality attributes. They summarized their work by concluding

that metrics that quantify complexity, cohesion, coupling and size can be useful

indicators for reliability and maintainability.

In the paper [13], Jehad Al Dallal and his co-author Sandro Morasca have proved

empirically that the reuse-proneness of classes can be foreseen and also enhanced

by regulating their three internal quality attributes, which are size, cohesion and

coupling. The author Jehad Al Dallal again in 2011 [6], proposed a cohesion metric

and method to measure the discriminative power of class cohesion metrics. Foutse

Khomh et al in 2008 [4] have illustrated that design patterns do not consistently

boost the quality of the software. Hence they justify the demand for more studies

to gauge the impact of the object oriented principles on the quality of systems.

Jagdish Bansiya and Carl G. Davis have constructed a hierarchical model QMOOD

[5] to inspect the quality of software products and implemented a software quality

tool QMOOD++ to easily evaluate real-time projects.

3. Shuffler Design Pattern

Shuffler, a behavioural design pattern provides solution to the common problem of

jumble or interchange of the objects position in any application. Shuffle method is

employed for the rearrange of the positions of various objects as stated in [2]. The



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

4 Authors’ Names

pattern provides flexibility for the developer to employ various shuffling algorithms

based on the application requirements. In case of complex applications the use

of Shuffler design pattern is significant. If the behavior of algorithm changes at

run time then Shuffler would be a special case of application of Strategy design

pattern. However, Shuffler differs from strategy in applications which involve partial

shuffling of objects. The influence of the pattern on reusability, a key software quality

attribute is studied in the following sections. The class diagram of shuffler design

pattern is as shown in Figure 1.

4. Results

This section of the paper presents the results of the assessments, according to three

perspectives. The first section presents the analysis of metrics on the three open

source applications with only Shuffler pattern. The second part provides the re-

search outcomes with the applications redesigned with both Shuffler pattern and

the related patterns, Singleton and Prototype. The third section presents the results

of component based analysis on the aforementioned applications.

4.1. Analysis of metrics - Shuffler pattern

The open source gaming applications such as Poker, Jigsaw puzzle and Scramble

were re-designed and implemented with Shuffler design pattern. Poker is a gambling

card game in which the dealer distributes the shuffled cards to the players. This

game is designed using object-oriented paradigm and implemented in Java. The

same game is rejuvenated using Shuffler Design Pattern. Jigsaw Puzzle is a tiling

Fig. 1. Class diagram for Shuffler design pattern



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

Evaluating the Reusability of Systems with Shuffler Design Pattern 5

puzzle game that displays shuffled pieces of an image. Scramble is a word game that

jumbles the letters of a word.

For a clear visualization of the Jigsaw game design, the class diagrams of the

Jigsaw Puzzle before and after applying Shuffler Pattern is shown in Figure 2, 3

respectively.

Fig. 2. Class diagram of Jigsaw game

Fig. 3. Re-designed Jigsaw game with Shuffler design pattern



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

6 Authors’ Names

The quality of these software projects are assessed by using an Eclipse Plug-

in, named Metrics. The impact of Shuffler Design Pattern on the above mentioned

projects are recorded. The results of metric analysis on Jigsaw Puzzle, Poker and

Scramble are tabulated in Table [1], Table [2] and Table [3] respectively.

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 4.667 1.886 6 3.4 2.154 6

McCabe Cyclomatic Complexity 1.688 1.685 7 1.55 1.532 7

Total Lines of Code 232 251

Lack of Cohesion of Methods 0.267 0.377 0.8 0.16 0.32 0.8

Table 1. Object Oriented Metrics for Jigsaw Puzzle

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 1.75 0.968 3 1.7 0.9 3

McCabe Cyclomatic Complexity 2.108 2.667 18 2.059 2.617 18

Total Lines of Code 509 524

Lack of Cohesion of Methods 0.292 0.321 0.888 0.234 0.31 0.888

Table 2. Object Oriented Metrics for Poker

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 1 0 1 1.25 0.433 2

McCabe Cyclomatic Complexity 1.333 0.471 2 1.143 0.35 2

Total Lines of Code 35 53

Lack of Cohesion of Methods 0 0 0 0 0 0

Table 3. Object Oriented Metrics for Scramble

Depth of Inheritance (DIT) is a measure of inheritance of an object oriented

model. Higher DIT values indicate increased reusability and complexity of the design

whereas a lower value specifies less complexity of the object oriented design. A

program that is likely difficult to understand has a greater McCabe number. The

smaller differences in the LOC values for re-designed projects signify minimum

effort required for the re-design. The assessment of abstraction for a class is given

by LCOM. A low LCOM value signifies high cohesion.

A closer observation of the above tables indicates Shuffler has improved the

reusability factor of Scramble project and also provides ease of understanding for

Poker and Jigsaw games.



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

Evaluating the Reusability of Systems with Shuffler Design Pattern 7

4.1.1. Analysis of metrics Shuffler combined with related patterns

A combination of various related design patterns were applied to the existing

projects and the impact of Shuffler design pattern is studied. The Jigsaw project

was implemented with Singleton pattern for the creation of Jigsaw board. Proto-

type pattern is used in Scramble project to create instances of the letters to be

shuffled. Singleton pattern was applied to Jigsaw Puzzle along with Shuffler pat-

tern and the results are provided in Table 4. Similarly Singleton and Prototype

pattern are applied to Scramble and the results are as shown in Table 5 and Table

6 respectively.

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 3.4 2.154 6 3.4 2.154 6

McCabe Cyclomatic Complexity 1.55 1.532 7 1.5 1.469 7

Total Lines of Code 251 256

Lack of Cohesion of Methods 0.16 0.32 0.8 0.16 0.32 0.8

Table 4. Object Oriented Metrics for Jigsaw Puzzle with Singleton

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 1.25 0.433 2 1.25 0.433 2

McCabe Cyclomatic Complexity 1.143 0.35 2 1.143 0.35 2

Total Lines of Code 53 53

Lack of Cohesion of Methods 0 0 0 0 0 0

Table 5. Object Oriented Metrics for Scramble with Singleton

Before Pattern After Pattern

Mean Total Mean Std. Dev. Max Total Mean Std. Dev. Max

Depth of Inheritance Tree 1.25 0.433 2 1.333 0.471 2

McCabe Cyclomatic Complexity 1.143 0.35 2 1.5 1.5 6

Total Lines of Code 53 85

Lack of Cohesion of Methods 0 0 0 0 0 0

Table 6. Object Oriented Metrics for Scramble with Prototype

We infer the decrease in complexity of Jigsaw Puzzle with minimal effort for

design with related patterns. However Singleton pattern do not impact the metric

values on Scramble, Prototype pattern seems to have an increase in DIT value in-

dicating high reusability of the code. The above stated results are subjected to the



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

8 Authors’ Names

individual projects and cannot be generalized to other patterns or gaming applica-

tions.

4.2. Reusability metrics for Components

Realization of reusability of the components in component based software develop-

ment is done using metrics suite as stated in [3]. The various reusability metrics

include Existence of Meta-Information (EMI), Rate of Component Observability

(RCO), Rate of Component Customizability (RCC), Self-Completeness of Com-

ponents Return Value (SCCr) and Self-Completeness of Components Parameter

(SCCp). For each of the gaming applications re-designed using the Shuffler design

pattern , the components are evaluated for reusability based on the above mentioned

metrics as shown in Figure 4,5 and 6. The values of each of the five metrics within

the confidence interval specified in [3] indicate higher quality of the corresponding

metric.

5. Threats to Validity

This section of the paper explores possible threats to the validity of the paper.

Firstly, albeit the analysis applied to study the impact ensures precision, the results

on Shuffler design pattern and related patterns like Prototype and Singleton cannot

be postulated to the rest of the 23 design patterns that are outlined in [1]. Next,

since the gaming applications are open source projects, the experimental results

may not be relevant to black-box reuse scenarios where the developer has no access

to the source code. Furthermore, the dataset constituted only of Java projects,

the results cannot be generalized to other object oriented programming languages.

Fig. 4. Component Based Metrics for Poker



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

Evaluating the Reusability of Systems with Shuffler Design Pattern 9

Moreover, only three projects have been considered for the study, but the statistical

implications of the results imply that the results are largely okay. The results and

outcome of our research confide strongly in the metrics listed in the METRICS

suite, discussed in the Results section. The validity of the evaluation is confined to

only these projects, thus reusability is not guaranteed for other projects. Our study

does not focus on the impact on other quality attributes other than reusability.

Fig. 5. Component Based Metrics for Scramble

Fig. 6. Component Based Metrics for Jigsaw



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

10 Authors’ Names

6. Conclusion

This paper aims at emphasizing the effect of shuffler design pattern on quality at-

tributes, specifically reusability. The first research effort made by the authors in

the direction of design patterns was the identification of Shuffler design pattern

and more importantly its known uses. After a thorough literature survey on papers

related to GOF design patterns, we studied the impact of Shuffler pattern on few

open source gaming application. The metrics related to the study includes Depth

of Inheritance tree, Lack of Cohesion of methods, Lines of code and McCabe Cyclo-

matic complexity. With this study we conclude that shuffler design pattern improves

reusability of the applications under study with a minimal effort for re-design of

the existing projects with shuffler pattern.

The study also measures the software quality of the gaming applications with

Shuffler and related patterns like Singleton and Prototype to ensure the compat-

ibility of the shuffler pattern with other related patterns on the implementation

perspective. The result observed ensures improved code reusability and high cohe-

sion on the gaming applications.

In addition to the conventional metrics, this study also focuses on reusability

metric to measure the reuse of the black box components of the three gaming

applications. The advantage of this analysis is it would be helpful to designers

when the source code of components is not available. The CBD analysis carried out

for the projects support our claim of improved software reusability.

References

[1] Ivana Turnu, Giulio Concas, Michele Marchesi, Roberto Tonelli, Entropy of some CK
metrics to assess object-oriented software quality, International Journal of Software
Engineering and Knowledge Engineering, 2013.

[2] G Priyalakshmi, R Nadarajan, S Anandhi, Software Reuse with Shuffler Design
Pattern, SEAT, 2016.

[3] Hironori Washizaki, Hirokazu Yamamoto, Yoshiaki Fukazawa, A Metrics Suite for
Measuring Reusability of Software Components, IEEE Xplore, 2003.

[4] Foutse Khomh, Yann-Gael Gueheneuc, Do Design Patterns Impact Software Quality
Positively?, IEEE Xplore, 2008.

[5] Jagdish Bansiya, Carl G. Davis A Hierarchical Model for Object-Oriented Design
Quality Assessment, IEEE Transactions on Software Engineering, 2002.

[6] Jehad Al Dallal, Measuring the Discriminative Power of Object-Oriented Class Co-
hesion Metrics, IEEE Transactions on Software Engineering, 2011.

[7] Peter Wendorff Assessment of design patterns during software reengineering: lessons
learned from a large commercial project, IEEE Xplore, 2002.

[8] Apostolos Ampatzoglou, Sofia Charalampidou, Ioannis Stamelos, Research state of
the art on GoF design patterns a mapping study, Journal of Systems and Software,
2013.

[9] Apostolos Ampatzoglou, Georgia Frantzeskou, Ioannis Stamelos, A methodology to
assess the impact of design patterns on software quality, Information and Software
Technology, 2012.

[10] Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos,



October 9, 2016 14:12 WSPC/INSTRUCTION FILE shufflerpaper

Evaluating the Reusability of Systems with Shuffler Design Pattern 11

An empirical investigation on the reusability of design patterns and software packages,
Journal of Systems and Software, 2011.

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design patterns: ele-
ments of reusable object-oriented software ACM Digital Library, 1995.

[12] Ronald Jabangwe, Jrgen Brstler, Darja Smite, Claes Wohlin, Empirical Evidence
on the Link between Object-Oriented Measures and External Quality Attributes: A
Systematic Literature Review, Empirical Software Engineering, 2015.

[13] Jehad Al Dallal, Sandro Morasca, Predicting object-oriented class reuse-proneness
using internal quality attributes, Empirical Software Engineering, 2014.


