
Too Long; Didn’t Watch! Extracting Relevant Fragments
from Software Development Video Tutorials

Luca Ponzanelli1, Gabriele Bavota2, Andrea Mocci1, Massimiliano Di Penta3

Rocco Oliveto4, Mir Hasan5, Barbara Russo2, Sonia Haiduc5, Michele Lanza1

1Università della Svizzera Italiana (USI), Switzerland — 2Free University of Bozen-Bolzano, Italy
3University of Sannio, Italy — 4University of Molise, Italy — 5Florida State University, USA

ABSTRACT
When knowledgeable colleagues are not available, developers
resort to offline and online resources, e.g., tutorials, mailing
lists, and Q&A websites. These, however, need to be found,
read, and understood, which takes its toll in terms of time and
mental energy. A more immediate and accessible resource
are video tutorials found on the web, which in recent years
have seen a steep increase in popularity. Nonetheless, videos
are an intrinsically noisy data source, and finding the right
piece of information might be even more cumbersome than
using the previously mentioned resources.

We present CodeTube, an approach which mines video
tutorials found on the web, and enables developers to query
their contents. The video tutorials are split into coherent frag-
ments, to return only fragments related to the query. These
are complemented with information from additional sources,
such as Stack Overflow discussions. The results of two studies
to assess CodeTube indicate that video tutorials—if appro-
priately processed—represent a useful, yet still under-utilized
source of information for software development.

CCS Concepts
•Software and its engineering → Software maintenance
tools; Documentation;

Keywords
Recommender Systems, Mining Unstructured Data

1. INTRODUCTION
Developers need to continuously acquire new knowledge

to keep up with their daily tasks. For example, to use a new
library, learn a new programming language, or to develop
mobile applications, they can use several resources to get the
information they need. Especially online resources are on
the rise [43], e.g., forums, blogs, Question & Answer (Q&A)
websites, slide presentations, due to the amount and diversity
of available information.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884824

When using search engines to find information for their
tasks, developers often get a mix of results from these sources.
Among them, a recent and rapidly emerging source of infor-
mation are video tutorials. Video tutorials can be effective
in providing a general and thorough introduction to a new
technology, as they often include a step-by-step, learn-by-
example introduction to how a technology should be applied
in practice. A recent study by MacLeod et al. [19] investi-
gated how and why software development video tutorials are
created, and found that they share details such as software
customization knowledge, personal development experiences,
implementation approaches, application of design patterns
or data structures. The study also highlighted key advan-
tages of video tutorials compared to other resources, such
as user manuals. These advantages include the ability to
visually follow the changes made to the source code, to see
the environment where the program is executed, to view the
execution results and how they relate to the source code, and
to understand a development activity in depth by looking at
different levels of details. In essence, video tutorials can pro-
vide a learning perspective different and complementary to
that offered by traditional, text-based sources of information.

Despite these benefits, there is still limited support for help-
ing developers to find the relevant information they require
within video tutorials. In many cases, video tutorials are
lengthy, and lack an index to allow finding specific fragments
of interest. Thus, to find information about a concept in a
video tutorial, a developer can either watch the entire video,
leading to effort and time wasted watching the irrelevant
parts, or skim it, risking to miss important information.

Moreover, a developer may need information from diverse
sources to thoroughly understand a new concept. For exam-
ple, when learning to use a new library, a developer could
benefit from an introductory video tutorial, complemented by
discussions about known issues of that library from forums
such as Stack Overflow. To the best of our knowledge, there
is no support for integrating this kind of complementary,
cross-platform information about a programming topic.

While approaches have been proposed to support develop-
ers by mining API documentation [36,37] and Q&A websites
such as Stack Overflow [14,32], or by automatically synthesiz-
ing code examples from existing code bases [1,6,16,25], there
is currently no approach aimed at leveraging relevant infor-
mation found within fragments of video tutorials and linking
these fragments to other relevant sources of information.

We propose CodeTube, a novel approach that effectively
leverages the information found in video tutorials and other
online resources, providing it to developers for a task at hand.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 261

CodeTube recommends video tutorial fragments relevant
to a given textual query, and complements them with Stack
Overflow discussions related to the extracted video fragments.
CodeTube starts from a set of videos relevant to a broad
topic of interest (e.g., Android development, J2EE). Then,
CodeTube analyzes the videos and identifies when source
code is being shown (e.g., through the IDE) on the screen, by
using a series of algorithms and heuristics aimed at identifying
shapes and fragments of Java source code in the frame. Then,
it isolates cohesive video fragments, i.e., sequences of frames
in which source code is being written, scrolled, or alternated
with other informative material. The text contained in each
video fragment is extracted and complemented with the text
of the audio transcript occurring at the same time. Finally,
all this information is indexed using information retrieval
techniques. In addition, CodeTube searches and indexes
Stack Overflow discussions relevant to each video fragment. A
developer can then query CodeTube through a web interface,
and obtain a ranked list of relevant video fragments with
related Stack Overflow discussions.
CodeTube is currently available with a set of 4,747 in-

dexed videos related to Android development extracted from
YouTube. The videos currently considered resulted in a to-
tal of 38,783 fragments. The mean length of videos is 908s
(1st quartile 433s, median 684s, 3rd quartile 1,073s); the
fragments are one order of magnitude shorter, with a mean
length of 66s (1st quartile 52s, median 55s, 3rd quartile 66s).

We evaluated CodeTube in two different studies. In the
first study, 34 developers with Android experience performed
an intrinsic evaluation of the results produced by Code-
Tube through an online survey. The participants evaluated
(i) the coherence and conciseness of the video fragments pro-
duced by CodeTube, as well as their relevance to a query,
as compared to the results returned by YouTube, and (ii)
the relevance and complementarity of Stack Overflow discus-
sions returned by CodeTube for specific video fragments.
In the second study, we performed an extrinsic evaluation
of the approach by introducing CodeTube to three leading
developers involved in the development of Android apps. Af-
ter that we asked them questions about the usefulness of
CodeTube, focusing on the value of extracting fragments
from video tutorials, and of providing recommendations by
combining different sources of information.

Paper structure. Section 2 details CodeTube, while
Section 3 and Section 4 describe and report the results of the
intrinsic and the extrinsic evaluations. Threats to validity
are discussed in Section 5. After a discussion of the related
literature (Section 6), Section 7 concludes the paper.

2. CODETUBE OVERVIEW
CodeTube is a multi-source documentation miner to lo-

cate useful pieces of information for a given task at hand.
The results are fragments of video tutorials relevant for a
given textual query, augmented with additional information
mined from other “classical”, text-based online resources.

Figure 1 depicts the CodeTube pipeline. It is composed of
(i) an offline analysis phase aimed at collecting and indexing
video tutorials and other resources, and (ii) an online service
where developers can search these processed resources. The
analysis of video tutorials is currently limited to English
videos dealing with the Java programming language. In the
following we detail each step of the CodeTube pipeline.

Video Tutorials
Crawler

Video Tutorials
Analyzer

Lucene
Index Builder

Lucene IR Engine

Video Fragements
Identifier

Video Tutorials
(Youtube, Vimeo, …)

Video
Tutorial

Fragments

Island Parser
Lucene IR Engine

Tesseract OCR

Online Resource
Index (StackOverflow
discussions, etc.)

Video Slices Index

VideosVideos

Text Source Code

Audio Transcript

VideosVideos

Video Tutorials

Audio Transcript

Online Resources
(StackOverflow, Mailing Lists,

Documentation, …)

Figure 1: CodeTube: Analysis process.

2.1 Crawling and Analyzing Video Tutorials
The first step of the process is defining the topics of in-

terest. The user provides (i) a set of queries Q describing
the video tutorials she is interested in (e.g., “Android de-
velopment”) and (ii) a set of related tags T to identify and
index relevant Stack Overflow discussions (e.g., “Android”).
Each query in Q is run by the Video Tutorials Crawler using
the YouTube Data API1 to get the list of YouTube chan-
nels relevant to the given query qi ∈ Q. For each channel
the Video Tutorials Crawler retrieves the metadata (e.g.,
video url, title, description) and the audio transcripts, which
are either automatically generated or written by the author.
Using Google2Srt2 we extract the transcriptions for the
videos. The crawling of video meta-information is performed
on YouTube, but it can be extended to any video streaming
service or video collection where the same type of meta-
information and transcripts are available or can be extracted,
e.g., using a speech recognition API.

Once the videos have been crawled, their metadata is
provided as input to the Video Tutorial Analyzer. It analyzes
each video and extracts pieces of information to isolate video
fragments related to a specific topic. The Video Tutorial
Analyzer aims at characterizing each video frame with the
text and the source code it contains. It uses multi-threading
to concurrently analyze multiple batches of videos.

Frame Extraction. The analysis starts by download-
ing the video at the maximum available resolution. Code-
Tube uses the multimedia framework FFmpeg3 to extract
one frame per second, saving each frame in a png image.
Given the set of frames in the video, we compare subsequent
pairs of frames (fi, fi+1) to measure their dissimilarity in
terms of their pixel matrices. If they differ by less than
10% we only keep the first frame in the data analysis since
the two frames show almost the same information. This
scenario is quite common in video tutorials where the image
on the screen is fixed for some seconds while the tutor speaks.
This optimization considerably reduces the computational
cost of our process without losing important information.
After obtaining the reduced set of frames to analyze, Code-
Tube performs the following information extraction steps.

1https://developers.google.com/youtube/v3/
2http://google2srt.sourceforge.net/en/
3http://www.ffmpeg.org/

262

http://y2u.be/eKXnQ83RU3I

http://y2u.be/NMDPxN8FgXM1

2

3http://y2u.be/jQWB_-o1kz4

Figure 2: Example frames from which CodeTube is
able to extract code fragments.

English Terms Extraction. We use the tool tesseract-
ocr4 (Optical Character Recognition) to extract the text
from the frame. We only consider correct English words by
matching them with a vocabulary. OCR tools are usually
designed to deal with text on white background (i.e., paper
documents). In order to cope with this, many OCR tools
convert colored images to black and white before processing
them. When using an OCR tool on video frames, the high
variability of the background, and the potential low quality
of a frame can result in a high amount of noise. Thus, after
splitting composite words—based on camel case or other
separators—we use a dictionary-based filtering, to ignore
strings that are invalid English words5.

Java Code Identification. In principle, the output of
the OCR could be processed to extract the depicted Java con-
structs. However, such output often contains noise. Figure 2
shows three frames containing Java code. In frame 1 the code
occupies the whole screen, and there is a clear background:
the noise of the OCR output is limited. The noise increases
in the Frames 2 and 3, due to the buttons, menu labels, the
graphics on the t-shirt, etc. To limit the noise produced by
the OCR we identify the sub-frame containing code using
two heuristics, shape detection and frame segmentation.

Shape Detection. We use BoofCV6 to apply shape de-
tection on a frame, identifying all quadrilaterals by using
the difference in contrast in the corners. This is typically
successful to detect code editors in the IDE as in Frame 2.

Frame Segmentation. The shape detection phase could fail
in identifying sub-frames with code. In Frame 3 of Figure 2
BoofCV fails because of missing quadrilaterals. In this case,
we apply a segmentation heuristic by sampling small sub-
images having height and width equal to 20% of the original
frame size and we run the OCR on each sub-image. We mark
all sub-images Sm containing at least one valid English word
and/or Java keyword and we identify the part of the frame
containing the source code as the quadrilateral delimited by
the top-left sub-image (i.e., the one having the minimum x
and y coordinates) and the bottom-right sub-image (i.e., the
one having the maximum x and y coordinates) in Sm.

4https://github.com/tesseract-ocr
5We use the OS X English dictionary.
6http://boofcv.org/

Identifying Java Code. After identifying a candidate sub-
frame, we run the OCR to obtain the raw text that likely
represents code. Then, we use an island parser [3, 24] on the
extracted text to cope with the noise, the imperfections of
the OCR, and the incomplete code fragments. The island
parser separates invalid code or natural language (water) from
matching constructs (islands), and produces a Heterogenous
Abstract Syntax Tree (H-AST) [34]. By traversing the H-AST
we can exclude water nodes and keep complete constructs
(e.g., declarations, blocks, other statements) and incomplete
fragments (e.g., partial declarations, like methods without a
body). If we are not able to match complete or incomplete
Java constructs with any of the described heuristics, we
assume that the frame does not contain source code.

2.2 Identifying Video Fragments
The Video Fragments Identifier detects cohesive fragments

in a video tutorial using the previously collected information.
We refer to Figure 3 to illustrate the performed steps. Code-
Tube starts by identifying video fragments characterized by
the presence of a specific piece of code. The conjecture is
that a frame containing a code snippet is coupled to the
surrounding video frames showing (parts of) the same code.

Identifying the video frames containing a specific code
snippet presents non-trivial challenges. First, a piece of code
could be written incrementally during a video tutorial: if
writing a Java class in a video tutorial lasts 3 minutes, all
frames in the 3-minute interval will contain snippets of code
related to that class and thus should be considered as part of
the same video fragment. However, such code snippets are
different (i.e., they contain different programming constructs)
due to the incremental writing. Second, the tutor could, to
provide a line-by-line explanation, scroll the code snippet
shown on video. Again, this causes frames showing the same
code snippet to show different“portions” of it. Last, the tutor
could interleave two frames showing the same snippet of code
with slides or other material (e.g., the Android emulator).

CodeTube overcomes these challenges and identifies video
fragments characterized by the presence of a specific piece
of code by comparing subsequent pairs of frames containing
code to verify if they refer to the same code snippet. The
frames depicted in red in Figure 3 represent “code frames”,
that is, frames containing code fragments. Given two code
frames CodeTube verifies if they contain at least one com-
mon complete or incomplete Java construct. If so, the two
frames are marked as containing the same code component.
If not, we cannot exclude that the two frames do not refer to
the same code; We have to take into account (i) possible im-
precisions of the OCR when extracting the source code from
the two frames, i.e., it could happen that a Java construct
is correctly extracted only in one of the two frames, and (ii)
the possibility that a scrolling from one frame to another has
hidden some constructs in one of the two frames.

If the island parser fails in matching a common construct
in the two frames, we compute the Longest Common Sub-
string (LCS) between the pixel matrices representing the
code frames. Specifically, we represent matrices as strings,
where each pixel is converted to a 8-bit grayscale representa-
tion. If the LCS between the two frames includes more than
α of the pixels in the frames, CodeTube considers the two
frames as showing the same code snippet.

The process adopted to tune the threshold α is reported
in Section 2.3.

263

No Code Frame
Code Frame

Code Interval
Transcript Interval

Video Fragment

1 2 3 4 5 6 7 8 9

Fragment 1 Fragment 2 Fragment 3

Figure 3: Identification of video fragments.

Note that the LCS is not affected by possible OCR impre-
cisions, and it does not suffer of problems related to the IDE
scrolling, as shown in Figure 4 (in cyan the portion of the two
frames identified as LCS). As a drawback, LCS is sensitive
to zooming. Since the alignment of the proportions between
two subsequent frames changes, LCS would fail in identifying
a common part. Overall, given the advantages of the LCS
over the Java constructs matching between the two frames
via island parser, one may think that applying the LCS for
each pair of code frames is the way to go. Unfortunately, the
LCS is very expensive to compute due to the huge number of
pixels composing a frame (a 1080p HD video has ∼2M pixels
per frame), and estimating the LCS on each pair of code
frames would require an unreasonable computation time.

For this reason, we adopt the LCS as a contingency strategy
when the island parser is unable to identify common Java
constructs in the two frames under analysis. To speed up the
LCS computation we scale the frames to 25% of their size.
In the example depicted in Figure 3, CodeTube compares
the code frame pairs (3,4), (4,7), and (7,8), identifying the
first two pairs as containing the same code snippet. As
highlighted by the grey line below the frames, it identifies
the first two cohesive “code intervals”, i.e., the first going
from frame 3 to frame 7 and the second containing frame 8
only. The “non-code frames” 5 and 6 (blue in Figure 3) are
included in the first code interval, since they are surrounded
by two code frames (4 and 7) containing the same snippet.

In a subsequent step CodeTube analyzes the audio tran-
scripts (black lines at the bottom of Figure 3) to refine
the already identified code intervals (grey lines). Code-
Tube identifies the audio transcripts starting and/or ending
inside each code interval. The audio transcripts are pro-
vided in the SubRip7 format when extracted from YouTube’s
videos. In the example reported in Figure 3, three audio
transcripts are considered relevant when refining the code
interval going from frame 3 to 7. CodeTube uses the be-
ginning of the first and the end of the last relevant audio
transcript for a code interval to extend its duration and avoid
that the code interval starts or ends with a broken sentence.
The extended code interval represents an identified video
fragment (Fragment 2—light cyan in Figure 3).

There might still be non-code frames in the video that
have not been assigned to any video fragment (e.g., frames
1 and 2 in Figure 3). These frames are grouped together
on the basis of the audio transcript part they fall in. For
example, the first two frames in Figure 3 are grouped in the
same video fragment (Fragment 1), since they both fall in the
same audio transcript part. As a final step, each subsequent
pair of fragments is compared to remove very short video
fragments and to merge semantically related fragments.

7https://en.wikipedia.org/wiki/SubRip

public String read(File file) {
 fis = new FileInputStream(file);
 byte[] data =
 new byte[(int) file.length()];
 fis.read(data);
 fis.close();

 return new String(data, "UTF-8");
}

 byte[] data =
 new byte[(int) file.length()];
 fis.read(data);
 fis.close();

 return new String(data, "UTF-8");
}

public boolean isNull(Object obj) {

Figure 4: LCS between two frames showing the same
code. The right frame is scrolled down by the tutor.

CodeTube merges together two subsequent fragments if
one of two conditions applies:

1. Their textual similarity (computed using the Vector Space
Model (VSM) [4]) is greater than a threshold β. Each video
fragment is represented by the text contained in its audio
transcripts and in its frames (as extracted by the OCR).
The text is pre-processed by removing English stop words,
splitting by underscore and camel case, and stemming with
the Snowball stemmer8.
2. One of the two fragments is shorter than γ seconds. This is
done to remove short video fragments that unlikely represent
a complete and meaningful fragment of a video tutorial.

2.3 Tuning of CodeTube Parameters
The performance of CodeTube depends on three parame-

ters that need to be properly tuned:

α – minimum percentage of LCS overlap between two frames
to consider them as containing the same code fragment;

β – minimum textual similarity between two fragments to
merge them in a single fragment;

γ – minimum video fragment length.

To identify the most suitable configuration, one of the
authors—who did not participate in the approach definition—
built a “video fragment oracle” by manually partitioning a set
of 10 video tutorials into cohesive video fragments. Then, we
looked for the CodeTube parameters configuration best ap-
proximating the manually defined oracle. A challenge in this
context is how to define the “closeness” of the automatically-
and manually-generated video fragments.

Estimating Video Fragments Similarity. A video can
be seen as a set of partitions (video fragments) of frames,
where each frame belongs to only one partition, i.e., the gen-
erated video fragments are clusters of frames. To compare
the closeness of the video fragments generated by Code-
Tube and those manually defined in the oracle, we used the
MoJo effectiveness Measure (MoJoFM) [44], a normalized
variant of the MoJo distance, computed as:

MoJoFM(A,B) = 100−
(

mno(A,B)

max(mno(∀EA, B))
× 100

)
where mno(A,B) is the minimum number of Move or Join
operations needed to transform a partition A into a parti-
tion B, and max(mno(∀ EA, B)) is the maximum possible
distance of any partition A from the partition B. Thus,
MoJoFM returns 0 if A is the farthest partition away from
B, and returns 100 if A is exactly equal to B.

8http://snowball.tartarus.org

264

Table 1: Parameter tuning intervals.
Parameter Min Max ∆
α 5% 50% 5%
β 10% 80% 5%
γ 1,000s 120,000s 10,000s

While MoJoFM is suitable to compare different partitions
(video fragments) of the same elements (frames), we must
take into account that video fragments are characterized by
a constraint of sequentiality (i.e., they can only contain sub-
sequent frames). This could lead the MoJoFM to return high
values (similarity) even when applied to two totally different
video partitions. For example, consider the video frames
F = {1, 2, 3, 4, 5, 6} and two sets of video fragments where
the first set, A = {1, 2, 3, 4, 5, 6}, contains a unique partition
(video fragment) with all the elements (frames), and the sec-
ond set, B = {{1, 2, 3}, {4, 5, 6}}, contains 2 partitions of size
3. Since the MoJoFM is not a symmetric function, it would
returnMoJoFM (A,B) = 25.0 andMoJoFM (B,A) = 80.0,
i.e., two different values, despite the fact that the two parti-
tions are the same. Keeping a one-way comparison between
the oracle and the obtained video fragments undermines the
tuning phase. To avoid this, yet keeping a margin of approx-
imation, both sides of the MoJoFM should be taken into
account. Two sets of fragments will tend to have the same
value if they are close in their partitioning. For this reason,
we calculate the similarity in both directions and compute
their mean value:

closeness(A,B) =
MoJoFM(A,B) +MoJoFM(B,A)

2

In doing so, spikes of high values for the MoJoFM between
two sets of video fragments for one direction are lowered or
preserved depending on the opposite.

Estimating the Most Suitable Parameter Configu-
ration. For each parameter, we identified a set of possible
values. Table 1 shows the intervals we adopted, and the
step (∆) used whenever a new combination is generated. In
total, we experimented 1,800 different parameter combina-
tions, adopting the one with the top ranked MoJoFM (α=5%,
β=15%, γ=50s) for the full-fledged analysis phase.

2.4 Integrating Other Sources of Information
CodeTube can be enriched by mining other online re-

sources, as our long-term goal [29] is to offer a holistic point
of view on the information at disposal, also because we argue
that no single type of resource can offer exhaustive assistance.
To illustrate this, we added as an additional online informa-
tion source the Stack Overflow data dump. We mined and
extracted discussions related to the topics of the extracted
video tutorials, pre-processed them to reduce the noise, and
made them available to CodeTube.

The last step in the data pre-processing of CodeTube con-
sists in indexing both the extracted video fragments and
the Stack Overflow discussions, using Lucene9, where each
video fragment is considered as a document. For Stack Over-
flow we separately index each question and answer for each
discussion. The text pre-processing phase is identical to
the one explained in Section 2.2. The text indexed for a
video fragment is represented by the terms contained in its

9https://lucene.apache.org/

2

1

3

4

5

Figure 5: CodeTube: User interface.

frames and audio transcripts. The text indexed for the Stack
Overflow post is represented by the terms they contain.

2.5 The CodeTube User Interface
CodeTube provides a service that allows user to search,

watch, and navigate the different fragments of a video. A
detailed description of the CodeTube’s service is reported
in a companion tool demonstration paper [33].

Figure 5 shows the user interface of CodeTube. When
a video fragment is selected for watching from the search
results, CodeTube uses the YouTube player (1) provided
by the YouTube API10. The video starts at the time devised
by the selected fragment. CodeTube provides an additional
controller (2) to visualize the timestamps of the fragments
identified by our approach, select a specific fragment, or move
to the next/previous fragment. During the video playback,
the selector underneath the video player keeps the pace of
the video timing and shows the current fragment. When a
new fragment is reached, or the user jumps to it, CodeTube
automatically extracts a query from the text contained in
the fragment (i.e., transcripts and OCR output of the frames
it contains), queries both the index of Stack Overflow and of
the video fragments, and updates the related discussions (3)
and the suggested YouTube video fragments (4). A search
bar (5) is always available to the user to run new queries.

3. STUDY I: INTRINSIC EVALUATION
The goal of this study is to evaluate CodeTube with the

purpose of determining the quality of the extracted video
fragments and related Stack Overflow discussions perceived
by developers. The quality focus concerns (i) the perceived
benefits and obstacles in using video tutorials during devel-
opment and (ii) the quality of video fragments (cohesiveness,
self-containment, relevance to a query) and Stack Overflow
discussions (relevance and complementarity to the video frag-
ment) mined by CodeTube. The four research questions
(RQ) the study aims to answer are:

RQ1: What are the perceived benefits and obstacles of using
video tutorials?

10https://developers.google.com/youtube/js api reference

265

RQ2: To what extent are the extracted video tutorial frag-
ments cohesive and self-contained?

RQ3: To what extent are the Stack Overflow discussions
identified by CodeTube relevant and complementary to
the linked video fragments?

RQ4: To what extent is CodeTube able to return results
relevant to a textual query?

The context of the study consists of participants and objects.
The participants have been identified using convenience sam-
pling among personal contacts of the authors, and by sending
invitations over mailing lists for open-source developers. In
total, 40 participants completed the survey. The objects
of the study are the set of 4,747 video tutorials about An-
droid development indexed in CodeTube. From these video
tutorials, CodeTube extracted a total of 38,783 fragments.

3.1 Study design and procedure
The study has been conducted using an online survey ques-

tionnaire, through which we asked questions to the potential
respondents to assess the results of CodeTube. The survey
questionnaire is composed of three sections, preceded by pre-
liminary assessment of the primarily activity (industrial/open
source developer, student, academic), programming experi-
ence, and specific experience about Android development of
respondents. The first section (addressing RQ1) contains
questions having an exploratory nature and aimed at under-
standing (i) how often and in which circumstances respon-
dents use video tutorials and Q&A Websites, (ii) whether
they found useful information there, and (iii) how they react
to video tutorials being too long (e.g., scroll it, watch it
anyway, or give up). We also asked participants what the
main points of strength and weakness of video tutorials are,
compared to standard documentation and Q&A Websites.

The second section shows to respondents three video frag-
ments extracted by CodeTube, as well as the original video
tutorial from YouTube. Then, it asks (RQ2) whether the
fragment is cohesive and self-contained. For each video frag-
ment, we also show the top-three relevant Stack Overflow
posts, and ask (RQ3) to what extent they are relevant and
complementary to the video tutorial fragments. While ap-
proaches to recommend Stack Overflow discussions exist [32],
our aim is to determine whether the textual content of the
video tutorial fragment can be used to retrieve relevant dis-
cussions. For each respondent, the second section is repeated
for two video tutorials randomly chosen from a sample of 20
video tutorials randomly selected from the 4,747.

The third section aims to assess the relevance of the top-
three returned video fragments to a given query (RQ4).
As a baseline for comparison, we evaluate the relevance of
the top-three videos returned by YouTube using the same
query. The query shown to each respondent is sampled
from a set of 10 queries formulated by graduate students at
Florida State University, having a long experience in Android
development. The queries are related to typical Android
problems, e.g., sending logs to servers, initiate activities in
background, animate transitions, access accelerometer data,
stopping background services, or modifying the UI layout.

The queries are generic, and YouTube is likely able
to return as relevant results as CodeTube. Only spe-
cific queries, referring to code elements—not contained in
YouTube metadata—would show the advanced of the index-
ing capabilities of CodeTube. Instead, we are interested in

showing that, for the typical queries a developer formulates,
CodeTube returns at least as relevant as YouTube, but
consisting in shorter, cohesive and self-contained fragments.

Finally, after the third section, we asked the respondents
to evaluate, through an open comment, the main points
of strength and weakness of CodeTube. All assessment-
related questions follow a 3-level Likert scale [27], e.g., “very
cohesive”, “somewhat cohesive”, and “not cohesive”. We limit
the number of video fragments, Q&A discussions and queries
for each respondent to avoid the questionnaire being too long.
Before sending the questionnaire to perspective respondents,
we ran a pilot study to assess its estimated duration, which
resulted to be between 25 and 40 minutes.

The questionnaire was then uploaded on the Qualtrics11

online survey platform, and a link to the questionnaire
was sent via email to the invitees. We made it clear that
anonymity of participants was presented and data were only
published in aggregate form. The Qualtrics survey plat-
form allowed us to achieve randomization and balancing, by
automatically selecting video tutorials (with related Stack
Overflow discussion) and queries to be evaluated by each
respondent. After sending out the invitation, invitees had
two weeks to respond.

3.2 Study results
Out of the 40 study participants, 6 declared to have no

experience in Android development. Since the video tu-
torials considered in the study were not introductory but
related to specific Android topics, we excluded their answers.
Excluding these, we collected a total of 180 video tutorial
fragment evaluations (with respect to their cohesiveness and
self-containment), 540 SO discussion evaluations, and 90
video tutorial fragment evaluations with respect to a query.
Ideally, we could have collected more evaluations, but we
have to consider that each of them requires respondents
to watch a video tutorial fragment (and in the case of the
queries also the whole video tutorial itself), hence we had
to be realistic in the workload required by the targeted re-
spondents. With such numbers and given our design, each
fragment and SO discussion received a number of evaluations
varying between 3 and 5, except for 3 videos and 2 queries,
that, due to the exclusion of some participants motivated
above, received less than 3 evaluations. These videos and
queries were excluded from the analysis. With a set of videos
smaller than our 20 we could have obtained more responses
per fragment and SO discussions. We decided to favor the
evaluation of a relatively larger set—and variety, hence more
generalizability—of videos rather than having more responses
and therefore more reliable evaluation for each video.

The population who completed our survey is composed of
70.6% of professional and open source developers, 17.6% of
master students, and 11.8% of PhD students. The majority
of developers in the population guarantees, on average, a
higher level of experience: 32.3% of the population has more
than 10 year experience, 17.5% has between 5 and 10 years,
38.3% between 3 and 5 years, 11.8% between 1 and 3 years.
No one declared less than 1 year of programming experience.
When asked about Android programming experience, the
majority (38.3%) declared less than 1 year of experience,
followed up by 23.5% of respondents with more than 3 years
experience, 20.5% between 2 and 3 years, and 17.6% between
1 and 2 years of experience.

11https://az1.qualtrics.com

266

1 1.5 2 2.5 3
Median score

of

 V
id

eo
 F

ra
gm

en
ts

0
10

20
30

40

1 (2%) 0 (0%)

9 (18%)
5 (10%)

36 (71%)

(a) Cohesion

1 1.5 2 2.5 3
Median score

of

 V
id

eo
 F

ra
gm

en
ts

0
10

20
30

40

2 (4%) 3 (6%)

16 (31%)

6 (12%)

24 (47%)

(b) Self-Containment

Figure 6: Distribution of median cohesion and self-
containment scores for the assessed video fragments.

3.2.1 RQ1: What are the perceived benefits and ob-
stacles of using video tutorials?

The usage of video tutorials either happens on a weekly
(38.2%) or monthly (35.3%) basis. 3% declared to use video
tutorials on a daily basis; nobody declared to never use them.
Video tutorials are unlikely to help bug/error fixing (5%),
but are the primary means to learn new concepts (43%).

When asked to provide open comments on the weaknesses
and strengths of video tutorials, respondents pointed out
different key aspects. The primary point of strength is the
step-by-step nature of a video. One respondent wrote “As
opposed to Q&A Websites, video tutorials describe a complete
process step-by-step. The visualized flow of actions is partic-
ularly useful in setting up working environments”, another
emphasized the “possibility to see the complete interaction
of the developer with the IDE” and “how a specific library
is imported before it is used in the code. This does not hold
when you simply copy and paste code from Websites”. An-
other point of strength identified by respondents concerns
the guidance given by a tutor. One respondent reported that

“there is a ’real’ person talking with you, so it is easy to learn
new concepts”, while another respondent emphasized the fact
that “you can see what the tutor does”.

The primary weakness identified by respondents concerns
time. When a video tutorial is too long, respondents said they
would either try to scroll it to seek the relevant information
(47%), or give up to find alternative sources (53%). Nobody
opted for the third option, i.e., watching the whole video
anyway. Respondents generally consider videos too long and
slow and not suited “if you need to quickly solve a problem”,
or “if you need just a small piece of information”. One
of the respondents reported how “due to time constraints
during software development I cannot always watch the entire
tutorial”. The lack of searching and indexing functionalities of
the contents of a video is also considered a weakness. One of
the respondents claimed that“browsing is not easy, unless the
video has an index to navigate through the concepts/sections
in the video”, while another highlighted how “searching for
a particular piece of information in the whole video is much
harder than doing the same in a text document”.

3.2.2 RQ2: To what extent are the extracted video tu-
torial fragments cohesive and self-contained?

Figure 6(a) shows the distribution of median perceived
cohesiveness scores for the 51 fragments of the 17 videos
that received at least three evaluations. The first quartile,
median and third quartile of the distribution are 2, 3, and
3, respectively. A large majority (71%) of the evaluated

1 1.5 2 2.5 3
Median score

of

 S
O

 D
isc

us
sio

ns
0

10
30

50
70

27 (18%)

3 (2%)

49 (32%)

16 (11%)

57 (38%)

(a) Relevance

1 1.5 2 2.5 3
Median score

of

 V
id

eo
0

5
10

15
20

0 (0%) 0 (0%) 1 (6%) 2 (12%)

14 (82%)

(b) Complementariness

Figure 7: Relevance of Stack Overflow discussions to
video fragments, and complementariness to videos.

fragments achieved a score of 3 (cohesive), and only one
fragment was considered as not cohesive.

Figure 6(b) shows the distribution of the median self-
containment score of the video fragments as provided by the
evaluators. In this case, the first quartile, median, and third
quartile are 2, 2.5 and 3, respectively. As one can notice from
the figure, the proportion of video fragments that received a
median score of 3 is lower than for cohesiveness (47%). This
is not surprising because obtaining self-contained fragments—
and hence understandable without watching the rest of the
video—is more challenging than achieving a high cohesiveness.
Nevertheless, the achieved cohesiveness is overall more than
reasonable as 59% of the fragments achieve a score greater
than 2, and only 10% of them were considered as not self-
contained (score less than 2).

Examples. Let us consider a video having high cohe-
sion12: the tutor introduces the problem of implementing
animations, and sets up the code for the next steps (fragment
1), implements the actual core of the animation (fragment
2), and runs the code to verify the animation (fragment 3).
In almost all the cases the fragments identified by Code-
Tube resulted to be very coherent. A counter-example lies
in the last fragment of another tutorial13, that is considered
not cohesive by the majority of the participants.

Let us now consider one positive case of self-containment14.
In the first two fragments of the video, the tutor initializes
the views, and adds the contents to a TextView. Participants
perceived a positive self-containment of these fragments be-
cause they strongly depend on each other. Absolute positive
consensus is reached on the last fragment, where the tutor
runs and tests the sample application he implemented.

The last video15 is a case of negative self-containment
across all the identified fragments. This video is a particular
corner case where the tutor gives for granted few basic notions
and thus the video itself exhibits a lack of self-containment,
thus making CodeTube not effective.

3.2.3 RQ3: To what extent are the Stack Overflow
discussions identified by CodeTube relevant &
complementary to the linked video fragments?

Figure 7(a) shows the distribution of the median perceived
relevance of the Stack Overflow discussions associated to the
video fragments of each video tutorial considered in the study.

12http://codetube.inf.usi.ch/view?id=BVhBEdLVxGY
13http://codetube.inf.usi.ch/view?id=1C4RNtaPXxE
14http://codetube.inf.usi.ch/view?id=pNxsCXicqGM
15http://codetube.inf.usi.ch/view?id=ROA7n27JFNs

267

The distribution first quartile is 2, the median 2 and the third
quartile 3. On the one hand, the perceived relevance is rela-
tively low, with only 38% of the Stack Overflow discussions
achieving a median relevance of 3.

On the other hand, if we look at Figure 7(b), we notice that
the distribution is polarized towards the maximum value—
first quartile, median and third quartile equal to 3—with
14 (82% of the total) of the videos where the Stack Over-
flow discussions were considered as complementary. Results
indicate that, while respondents only considered the retrieved
discussions fairly relevant to the fragments from where the
queries were generated, they almost totally agreed about
the complementarity of the provided information. We be-
lieve that video tutorials have a different purpose than Stack
Overflow discussions. The former have an introductory, step-
by-step guide to a given problem, the latter discuss a specific
problem/answering a specific questions. For instance, given
the fragments of a video16 showing how to code a layout
in XML for Android, CodeTube retrieved and suggested
Stack Overflow discussions concerning typical problems a
developer could encounter, like a button not showing up17,
or not well-formed XML18.

3.2.4 RQ4: To what extent is CodeTube able to re-
turn results relevant to a textual query?

In the last part of the survey, we asked participants to eval-
uate the top-three results that CodeTube and YouTube re-
trieved for a set of 10 queries. Each participant evaluated the
relevance of a result with respect to the query by following a
three-level Likert scale [27], i.e., “very related”, “somewhat re-
lated”, and “not related”. We use the Normalized Cumulative
Discounted Gain (NDCG) [21] to aggregate the results.

Similarly to what done for the other research questions,
queries with less than 3 replies are ignored. The NDCG is
thus calculated on a set of 8 queries out of the initial 10. We
obtainedNDCGCT (Q, 3) = 0.67 andNDCGY T (Q, 3) = 0.63
for CodeTube and YouTube , respectively. Even if Code-
Tube seems to perform slightly better than YouTube, a
statistical analysis of the NDCGY T and NDCGCT distri-
butions, performed using the Wilcoxon paired test, did not
show the presence of a statistically significant difference (p-
value=0.49). Even though the data collected is not enough to
draft any statistically significant conclusion, there are some
considerations to make. First, when extracting the top-three
results from YouTube we removed all the retrieved videos
that are not included in the CodeTube dataset. This makes
the comparison unfair for our approach. Second, YouTube
recommends entire videos, while CodeTube recommends
specific fragments. Thus, our approach is potentially more
focused even if both the fragment and the whole video rec-
ommended by YouTube are equally relevant.

3.2.5 CodeTube: Strengths and weaknesses
In the last part of the questionnaire we asked participants

to freely comment about CodeTube. The participants have
in general a positive impression of CodeTube. The UI has
been appreciated by some of the participants. For example,
one of the respondents reported “CodeTube looks very use-
ful, added to the bookmarks!”, while another wrote “excellent

16http://codetube.inf.usi.ch/view?id=1UE7dJ7DK
17http://stackoverflow.com/questions/16687060
18http://stackoverflow.com/questions/11829271

work, [..] the idea behind CodeTube is brilliant”. The extrac-
tion of fragments from video tutorials has been appreciated
and considered “very useful for developers who are already
knowledgeable about the topic, they can save a lot of time”.

The possibility of having complementary sources of infor-
mation, e.g., Stack Overflow has been appreciated by some
participants. One of them reported that “the concept is
amazing, and has a lot of possibility of improvement, given
the huge amount of different sources of data available”, while
other participants asked for additional features to improve
this functionality. One participant asked for “the possibility
to search for SO discussions directly below the video”, while
another wondered that“it would be nice if the tool can provide
a summary/description that describes the context”.

4. STUDY II: EXTRINSIC EVALUATION
A successful technological transfer is the main target ob-

jective for each prototype tool. Thus, the goal of this second
study is to extrinsically investigate CodeTube’s industrial
applicability. Specifically, the research question we aim to
answer with this second evaluation is:

RQ5: Would CodeTube be useful for practitioners?

The context of the study is represented by three leading
developers—all with more than five years of experience in app
development—of three Italian software companies, namely
Next, IdeaSoftware, and Genialapps.

4.1 Study design and procedure
We conducted semi-structured interviews to get quantita-

tive and qualitative feedback on CodeTube. Each interview
lasted two hours. During the interview we let developers
explore CodeTube for about 90 minutes, searching for video
tutorials on specific technology or to fix problems. Each
interview was based on the think-aloud strategy. We also
explicitly asked the following questions: (1) Do you use
video tutorials during development tasks? (2) Would the
extraction of shorter fragments make you more productive?
(3) Is the multi-source nature of CodeTube useful? (4) Are
you willing to use CodeTube in your company?

Participants answered each question using a 4-point Likert
scale: absolutely no, no, yes, absolutely yes. The interviews
were conducted by one of the authors, who annotated the
answers as well as additional insights about the strengths and
weaknesses of CodeTube that emerged during the interviews.

4.2 Study results
Nicola Noviello, Project Manager @ Next. Nicola

positively answered to our first three questions (i.e., “ab-
solutely yes”). Nicola declared to use video tutorials daily;
“they are particularly useful for senior and junior developers
for both learning a new technology or finding the solution to
a given problem. I see very often my developers on specialized
YouTube channels searching for and watching video tutorials.”
Nicola also appreciated the multi-source nature of Code-
Tube; “the video tutorial provides the general idea on the
technology, while Stack Overflow discussions are particularly
useful to manage alternative usage scenarios and specific
issues.”. Regarding the extraction of fragments, Nicola com-
mented that “I usually discard video tutorials that are too
long, because when I try to scroll/fast forward it to manually
locate segments of interest, I am generally not able to find

268

what I need. I strongly believe that the relevant segment is
there but randomly scrolling a video tutorial is not worthwhile!
I prefer to look for more focused video tutorials.”. Nicola then
confirmed that the availability of shorter fragments would
make him much more productive.

Nicola answered “yes” to the question related to the
usefulness of CodeTube; “I did not answer absolutely yes
because of the limited number of indexed tutorials. However,
I strongly believe that the tool has an enormous potential.”.
Nicola declared that he will present the tool to a newcomer
trainee to quantify to what extent the tool is useful for
developers that have a little knowledge on the Android
world; “I usually suggest to trainees to look for and watch
video tutorials but very often they are not able to find the
right information. I would like to see whether CodeTube is
able to mitigate such a problem.”.

Luciano Cutone, Project Manager @ IdeaSoft-
ware. Luciano positively answered to our first three
questions; “I love video tutorials but several times they are
too long and I do not have enough time to watch whole
videos. Thus, I have to scroll the video hoping to identify
relevant segments. This takes time and makes video tutorials
less effective. With CodeTube life will be easier!” When
exploiting different sources of information, Luciano works
differently from Nicola; “I like the idea of having video
tutorials together with Stack Overflow discussions. However,
the main source of information for me is Stack Overflow,
while video tutorials should be used to fix problems; if I
need to apply a new technology, I would like to start from
Stack Overflow since there I can find snippets of code
that I can copy and paste into my application. Then, if
something goes wrong, I try to find a video tutorial to fix
the problem.”. Luciano also suggested a nice improvement;
“Besides the integration of video tutorials with discussions
on forums, I suggest to add another source of information,
namely sample projects. Specifically, on GitHub there are
several sample projects that explain how to apply specific
technologies. Having them together with video tutorials and
Stack Overflow discussions would be fantastic.” Another
suggestion was the addition of a voting mechanism to
provide information on the usefulness and the effectiveness
of a specific (fragment of a) video tutorial. Luciano answered
“absolutely yes” to our last question (i.e., the one related to
the usefulness of CodeTube); “I just added CodeTube to
my bookmarks. This is the tool I wanted. I spent several
hours of the day and of the night on YouTube and Stack
Overflow to fix problems or learn new things. This is part of
my job, unfortunately. With CodeTube I am sure that I
will find relevant information quickly. I can finally go back
to sleep during the night!”. The day after the interview,
we got a text message from Luciano: “I have just used
CodeTube this morning. I was looking for something re-
lated to Android WebSocket. I found all I needed. Awesome!”.

Giuseppe Socci, Project Manager @ Genialapps.
Giuseppe answered “absolutely yes” to our first question,
stating that in his opinion “Video tutorials are a crucial
source of information for learning a new technology”. Instead,
he answered “no” to our second research question related
to the extraction of fragments; “I am not 100% sure that
extracting shorter fragments makes you more productive. It
depends on the scenario where the video tutorial is used. To

me, video tutorials should be used to learn a new technology.
In this case I should watch the whole video. However, there
could be cases where you just need to fix a problem or have
some clarifications on a specific part of the technology. In
this case watching fragments instead of whole videos could be
worthwhile”.

Giuseppe suggested a way to make the tool more usable
based on his way of interpreting video tutorials; “the search
of a video tutorial should be scenario-sensitive. Before search-
ing, the user should specify why she is searching for a video
tutorial. The first option could be ’I have a problem’. In this
case, the search is based on fragments. The second option
could be ’I want to learn’. Here, whole videos should be re-
trieved”. As well as the other two developers, Giuseppe liked
the integration of video tutorials with forum discussion (he
answered “absolutely yes” to our third research question).
Consistently with findings of Study I (Section 3.2.5), he
highlighted the need for manually refining queries when re-
trieving Stack Overflow discussions: “all the visualized Stack
Overflow discussions are related to a specific video tutorial.
However, Stack Overflow discussions should be useful to re-
solve a problem I encountered when applying the technology
explained in the video tutorial. Thus, it might be useful to
filter the retrieved discussion by a specific query (e.g., the
type of error I got).”. Finally, Giuseppe answered “yes” to our
final question; “I think that the tool is nice. You are trying to
solve an important and challenging problem, that is merging
accurately different sources of information in order to make
them more productive.”. Giuseppe also gave a suggestion on
how to improve the visualization of the relevant fragments;
“After submitting a query, CodeTube provides the list of
relevant video fragments. However, it is quite difficult from
the title of the video and the cover image to identify the most
relevant one. I strongly suggest to show for each video the
relevant textual part of the video content, similar to the part
of the text in a Web page content visualized by Web search
engines. The same approach could be used also to make the
navigation of the fragments of a specific video easier.”.

4.3 Reflection: Approach vs. Tool
The reception of CodeTube was positive. All leading

developers saw great value and even greater potential in this
line of work. Several improvement suggestions, obtained
also in Study I, regard the tool that embodies our approach,
which we are currently considering. Clearly, tools can always
be improved, given sufficient time and human resources.
However, we would like to emphasize that, stepping beyond
mere implementation and UI concerns, the main contribution
of the paper lies in the underlying approach.

5. THREATS TO VALIDITY
Threats to construct validity are mainly related to the

measurements performed in our studies, and Study I in par-
ticular. Instead of using proxy measures, we preferred to let
developers evaluate video fragments and their related Stack
Overflow discussions. Subjectiveness of such an evaluation
was mitigated by involving multiple evaluators for each video,
although as explained in Section 3.1 we favored the number
of videos over the number of responses per fragment.

Threats to internal validity concern factors internal to our
studies that could have influenced our results. One possible
problem is that the evaluation could have been influenced
by the knowledge of respondents about the topic. We mit-

269

igated this threat by discarding responses of participants
not having any knowledge about Android. In addition, the
evaluation is mainly related to cohesiveness, self-containment
and relevance of video fragments, and relevance and comple-
mentariness of Stack Overflow discussions, rather than to
how they would be helpful for the respondents.

In such cases, the bias represented by respondents is fairly
limited. The videos used in the survey have been randomly
sampled by considering 7 minutes as maximum video dura-
tion, and three as maximum number of fragments for each
video and query results. These limitations have been intro-
duced to restrict the survey duration to a reasonable time.

Threats to external validity concern the generalizability of
our findings. Our evaluation is intendedly limited to video
tutorials related to Android development, though further
evaluation with a wide variety of tutorials is desirable. Nev-
ertheless, such tutorials are not much different—in their
structure and content—than other Java development tutori-
als. Both CodeTube and its evaluation need to be extended
in the future to support multiple languages and, possibly,
to evaluate it when processing tutorials involving multiple
languages and pieces of technology. Finally, the validity of
the second study is limited to the three very specific mobile
app development contexts considered.

6. RELATED WORK
To our knowledge, the only work investigating the use of

video tutorials by developers is the study by MacLeod et
al. [19] which, as discussed in the introduction, represents
the underlying motivation behind CodeTube. We discuss
related work about (i) recommender systems for software
documentation and code examples, (i) multimedia retrieval
and processing, and (iii) use of multimedia in learning.

Recommender systems for software documenta-
tion and code examples. Numerous approaches have
been proposed to provide developers with official or informal
documentation for their task at hand, as well as code samples
they can reuse. Among the various informal documentation
sources, Stack Overflow has been used by many recommender
systems [7, 30–32,36, 41]. Other recommenders have focused
on recovering links between code and documentation [2],
with some focusing on recommending or enhancing API doc-
umentation [37, 40]. Among these, the work of Petrosyan
et al. [28] is the most related, as it analyzed tutorials to
extract fragments explaining API types. With respect to
such approaches, CodeTube is specific for analyzing video
tutorials and recommending their cohesive and self-contained
fragments. Other approaches aimed to retrieve code elements
or code examples relevant to a task at hand from the current
project or its code base [1, 6, 8, 16,17,20,25], or from online
resources [5,12,13,15,35,38–40,42]. Other work suggested
relevant web discussions to help solve coding problems [18].

The infrastructure of CodeTube is designed such that
any source of documentation can potentially be used to
complement the information extracted from video tutorials.

Multimedia Processing and Retrieval. Multimedia
information retrieval focuses on extracting and retrieving
relevant information from multimedia resources (e.g., images,
audio, or video). One problem in the field is splitting a video
into semantically coherent fragments. Existing approaches
usually employ supervised machine learning techniques ap-
plied to various textual, acoustic, and visual features [9]
to resolve such an issue. Galuščáková and Pecina [11] ex-

plored the use of Passage Retrieval segmentation techniques
to retrieve relevant segments by a textual query in a set
of audio-visual recordings. Mettes et al. [23] proposed an
approach using hierarchical clustering and syntactic and
semantic similarity metrics to identify the segments.

While CodeTube also identifies fragments within a video,
it is significantly different than those proposed in multimedia
retrieval: it is not supervised and bases its segmentation
algorithm on information specific to the software development
domain, i.e., the occurrence of code in the tutorials.

Use of Multimedia in Learning. Multimedia resources,
especially those using videos, have been shown to be a very
effective medium for learning, which is also often preferred
by students over written text. Mayer [22] established twelve
principles, based on numerous studies, that define the use
and efficiency of multimedia in learning environments. Some
of these principles clearly motivate CodeTube: (i) the mul-
timedia principle states that people learn better from words
and graphics than from words alone; (ii) the temporal con-
tiguity principle indicates that people learn better when
corresponding words and pictures are presented simultane-
ously rather than successively. Previous work has also shown
that YouTube can be an efficient way to teach new concepts.
Duffy [10] has shown that students like to use YouTube, as it
provides a user-guided experience. For Mullamphy et al. [26]
videos allow students to learn at their own pace. These
observations were also confirmed within our first study.

7. CONCLUSION
We presented CodeTube, a novel approach to extract rel-

evant fragments from software development video tutorials.
CodeTube mixes several existing approaches and technolo-
gies like OCR and island parsing to analyze the complex
unstructured contents of the video tutorials. Our approach
extracts video fragments by merging the code information
located and extracted within video frames, together with the
speech information provided by audio transcripts. Code-
Tube also automatically complements the video fragments
with relevant Stack Overflow discussions. We conducted
two studies to evaluate CodeTube. Our survey highlighted
the limitations of current video providers when it comes to
dealing with software development. We received positive
feedback about our approach and its potential. Also, we
investigated the perception of our approach in industry envi-
ronments by interviewing three leading developers, receiving
useful insights on the strengths and potential extensions of
our current work. To our knowledge, CodeTube is the first,
and freely available19 approach to perform video fragment
analysis for software development.

The current approach can be ameliorated, and the
fragments identification can be strengthened as well. We
also plan to improve the user experience. Lastly, we plan to
integrate additional sources of information other than Stack
Overflow, towards the concept of a holistic recommender.

Acknowledgements. The authors would like to thank
all the people involved in the evaluation of CodeTube. Pon-
zanelli is supported by the SNF Project “ESSENTIALS”,
No. 153129. Bavota is supported by the Free University
of Bozen-Bolzano through the STREAM project (IN2036).
Haiduc is supported in part by the NSF grant CCF-1526929.

19http://codetube.inf.usi.ch

270

8. REFERENCES
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API

patterns as partial orders from source code: from usage
scenarios to specifications. In Proceedings of
ESEC/FSE 2007 (6th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of
Software Engineering), pages 25–34. ACM, 2007.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia.
Information retrieval models for recovering traceability
links between code and documentation. In Proceedings
of ICSM (16th IEEE International Conference on
Software Maintenance), pages 40–51. IEEE CS Press,
2000.

[3] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci.
Extracting structured data from natural language
documents with island parsing. In Proceedings of ASE
2011 (26th IEEE/ACM International Conference On
Automated Software Engineering), pages 476–479, 2011.

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, 1999.

[5] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: A search engine for
open source code supporting structure-based search. In
Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and
Applications, pages 681–682. ACM, 2006.

[6] R. P. L. Buse and W. Weimer. Synthesizing API usage
examples. In Proceedings of ICSE 2012 (34th
International Conference on Software Engineering),
pages 782–792. IEEE, 2012.

[7] J. Cordeiro, B. Antunes, and P. Gomes. Context-based
recommendation to support problem solving in software
development. In Proceedings of RSSE 2012 (3rd
International Workshop on Recommendation Systems
for Software Engineering), pages 85–89. IEEE Press,
2012.

[8] D. Cubranic, G. Murphy, J. Singer, and K. Booth.
Hipikat: A project memory for software development.
IEEE Transactions on Software Engineering,
31(6):446–465, 2005.

[9] T. Du, Y. Junsong, and D. Forsyth. Video event
detection: From subvolume localization to
spatiotemporal path search. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
36(2):404–416, Feb. 2014.

[10] P. Duffy. Engaging the youtube google-eyed generation:
Strategies for using web 2.0 in teaching and learning. In
European Conference on ELearning, ECEL, pages
173–182, 2007.

[11] P. Galuščáková and P. Pecina. Experiments with
segmentation strategies for passage retrieval in
audio-visual documents. In Proceedings of ICMR 2014
(4th International Conference on Multimedia Retrieval),
pages 217:217–217:224. ACM, 2014.

[12] M. Goldman and R. C. Miller. Codetrail: Connecting
source code and web resources. Journal of Visual
Languages & Computing, 20(4):223–235, Aug. 2009.

[13] R. Holmes and A. Begel. Deep intellisense: A tool for
rehydrating evaporated information. In Proceedings of
MSR 2008 (5th IEEE International Working
Conference on Mining Software Repositories), pages
23–26, New York, NY, USA, 2008. ACM.

[14] R. Holmes and G. C. Murphy. Using structural context
to recommend source code examples. In Proceedings of
ICSE 2005 (27th International Conference on Software
Engineering, pages 117–125. ACM, 2005.

[15] R. Holmes, R. J. Walker, and G. C. Murphy.
Approximate structural context matching: An approach
to recommend relevant examples. IEEE Transactions
on Software Engineering, 32(12):952–970, Dec. 2006.

[16] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working
code examples. In Proceedings of ICSE 2014 (36th
International Conference on Software Engineering),
pages 664–675. ACM, 2014.

[17] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proceedings of
FSE 2006 (14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering),
pages 1–11. ACM, 2006.

[18] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes.
Automatically locating relevant programming help
online. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 127–134,
2012.

[19] L. MacLeod, M.-A. Storey, and A. Bergen. Code,
camera, action: How software developers document and
share program knowledge using YouTube. In
Proceedings of ICPC 2015 (23rd IEEE International
Conference on Program Comprehension), 2015.

[20] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: Helping to navigate the api jungle. In
Proceedings of PLDI 2005 (16th ACM SIGPLAN
Conference on Programming Language Design and
Implementation), pages 48–61. ACM, 2005.

[21] C. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[22] R. E. Mayer. Multimedia Learning. Cambridge
University Press, New York, NY, USA, 2nd edition,
2009.

[23] P. Mettes, J. C. van Gemert, S. Cappallo, T. Mensink,
and C. G. Snoek. Bag-of-fragments: Selecting and
encoding video fragments for event detection and
recounting. In Proceedings of ICMR 2015 (5th ACM
International Conference on Multimedia Retrieval),
pages 427–434. ACM, 2015.

[24] L. Moonen. Generating robust parsers using island
grammars. In Proceedings of WCRE 2001 (8th Working
Conference on Reverse Engineering), pages 13–22.
IEEE CS, 2001.

[25] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and
A. Marcus. How can I use this method? In Proceedings
of ICSE 2015 (37th IEEE/ACM International
Conference on Software Engineering), pages 880–890,
2015.

[26] D. Mullamphy, P. Higgins, S. Belward, and L. Ward.
To screencast or not to screencast. Anziam Journal,
51:C446–C460, 2010.

[27] A. N. Oppenheim. Questionnaire Design, Interviewing
and Attitude Measurement. Pinter Publishers, 1992.

[28] G. Petrosyan, M. P. Robillard, and R. De Mori.
Discovering information explaining api types using text
classification. In Proceedings of ICSE 2015 (37th

271

ACM/IEEE International Conference on Software
Engineering), pages 869–879, 2015.

[29] L. Ponzanelli. Holistic recommender systems for
software engineering. In Proceedings of ICSE 2014
(36th ACM/IEEE International Conference on
Software Engineering), Doctoral Symposium, pages
686–689. ACM, 2014.

[30] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging
crowd knowledge for software comprehension and
development. In Proceedings of CSMR 2013 (17th
European Conference on Software Maintenance and
Reengineering), CSMR ’13, pages 57–66. IEEE
Computer Society, 2013.

[31] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk:
Stack overflow in the ide. In Proceedings of ICSE 2013
(37th International Conference on Software
Engineering), pages 1295–1298. IEEE Press, 2013.

[32] L. Ponzanelli, G. Bavota, M. di Penta, R. Oliveto, and
M. Lanza. Mining StackOverflow to turn the IDE into
a self-confident programming Prompter. In Proceedings
of MSR 2014 (11th Working Conference on Mining
Software Repositories), pages 102–111. ACM Press,
2014.

[33] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta,
R. Oliveto, B. Russo, S. Haiduc, and M. Lanza.
CodeTube: extracting relevant fragments
from software development video tutorials. In
Proceedings of the 38th ACM-IEEE International
Conference on Software Engineering (ICSE 2016), 2015.

[34] L. Ponzanelli, A. Mocci, and M. Lanza. StORMeD:
Stack Overflow ready made data. In Proceedings of
MSR 2015 (12th Working Conference on Mining
Software Repositories), pages 474–477. ACM Press,
2015.

[35] S. P. Reiss. Semantics-based code search. In
Proceedings of ICSE 2009 (31st International
Conference on Software Engineering), pages 243–253.
IEEE CS Press, 2009.

[36] P. C. Rigby and M. P. Robillard. Discovering essential
code elements in informal documentation. In
Proceedings of ICSE 2013 (35th International

Conference on Software Engineering), pages 832–841.
IEEE Press, 2013.

[37] M. P. Robillard and Y. B. Chhetri. Recommending
reference API documentation. Empirical Software
Engineering, pages 1–29, 2014.

[38] N. Sawadsky and G. C. Murphy. Fishtail: From task
context to source code examples. In Proceedings of
TOPI 2011 (1st Workshop on Developing Tools As
Plug-ins), pages 48–51. ACM, 2011.

[39] J. Stylos and B. A. Myers. Mica: A web-search tool for
finding API components and examples. In Proceedings
of the Visual Languages and Human-Centric
Computing, VLHCC ’06, pages 195–202. IEEE
Computer Society, 2006.

[40] S. Subramanian, L. Inozemtseva, and R. Holmes. Live
API documentation. In Proceedings of ICSE 2014 (36th
International Conference on Software Engineering),
pages 643–652. ACM, 2014.

[41] W. Takuya and H. Masuhara. A spontaneous code
recommendation tool based on associative search. In
Proceedings of SUITE 2011 (3rd International
Workshop on Search-Driven Development: Users,
Infrastructure, Tools, and Evaluation), pages 17–20.
ACM, 2011.

[42] S. Thummalapenta and T. Xie. Parseweb: A
programmer assistant for reusing open source code on
the web. In Proceedings of the ASE (22nd IEEE/ACM
International Conference on Automated Software
Engineering), pages 204–213, New York, NY, USA,
2007. ACM.

[43] M. Umarji, S. Sim, and C. Lopes. Archetypal
Internet-Scale source code searching. In B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi,
editors, Open Source Development, Communities and
Quality, volume 275 of IFIP The International
Federation for Information Processing, pages 257–263.
Springer US, 2008.

[44] Z. Wen and V. Tzerpos. An effectiveness measure for
software clustering algorithms. In Proceedings of the
12th IEEE International Workshop on Program
Comprehension, pages 194–203, 2004.

272

